990 resultados para Order-Preserving Transformations
Resumo:
Илинка А. Димитрова, Цветелина Н. Младенова - Моноида P Tn от всички частични преобразования върху едно n-елементно множество относно операцията композиция на преобразования е изучаван в различни аспекти от редица автори. Едно частично преобразование α се нарича запазващо наредбата, ако от x ≤ y следва, че xα ≤ yα за всяко x, y от дефиниционното множество на α. Обект на разглеждане в настоящата работа е моноида P On състоящ се от всички частични запазващи наредбата преобразования. Очевидно P On е под-моноид на P Tn. Направена е пълна класификация на максималните подполугрупи на моноида P On. Доказано е, че съществуват пет различни вида максимални подполугрупи на разглеждания моноид. Броят на всички максимални подполугрупи на POn е точно 2^n + 2n − 2.
Resumo:
Glasgow Mathematical Journal, nº 47 (2005), pg. 413-424
Resumo:
In this article we consider the monoid O(mxn) of all order-preserving full transformations on a chain with mn elements that preserve a uniformm-partition and its submonoids O(mxn)(+) and O(mxn)(-) of all extensive transformations and of all co-extensive transformations, respectively. We determine their ranks and construct a bilateral semidirect product decomposition of O(mxn) in terms of O(mxn)(-) and O(mxn)(+).
Resumo:
Semigroup Forum vol. 68 (2004), p. 335–356
Resumo:
Communications in Algebra
Resumo:
The rank of a semigroup, an important and relevant concept in Semigroup Theory, is the cardinality of a least-size generating set. Semigroups of transformations that preserve or reverse the order or the orientation as well as semigroups of transformations preserving an equivalence relation have been widely studied over the past decades by many authors. The purpose of this article is to compute the ranks of the monoid
Resumo:
In this paper we give formulas for the number of elements of the monoids ORm x n of all full transformations on it finite chain with tun elements that preserve it uniform m-partition and preserve or reverse the orientation and for its submonoids ODm x n of all order-preserving or order-reversing elements, OPm x n of all orientation-preserving elements, O-m x n of all order-preserving elements, O-m x n(+) of all extensive order-preserving elements and O-m x n(-) of all co-extensive order-preserving elements.
Resumo:
Communications in Algebra, 33 (2005), p. 587-604
Resumo:
Bulletin of the Malaysian Mathematical Sciences Society, 2, 34 (1),(2011), p. 79–85
Resumo:
Bulletin of the Malaysian Mathematical Sciences Society
Resumo:
In this paper we consider the monoid OR(n) of all full transformations on a chain with n elements that preserve or reverse the orientation, as well as its submonoids OD(n) of all order-preserving or order-reversing elements, OP(n) of all orientation-preserving elements and O(n) of all order-preserving elements. By making use of some well known presentations, we show that each of these four monoids is a quotient of a bilateral semidirectproduct of two of its remarkable submonoids.
Resumo:
Let X be a finite or infinite chain and let be the monoid of all endomorphisms of X. In this paper, we describe the largest regular subsemigroup of and Green's relations on. In fact, more generally, if Y is a nonempty subset of X and is the subsemigroup of of all elements with range contained in Y, we characterize the largest regular subsemigroup of and Green's relations on. Moreover for finite chains, we determine when two semigroups of the type are isomorphic and calculate their ranks.
Resumo:
Algebra Colloquium, 15 (2008), p. 581–588
Resumo:
In this paper we give presentations for the monoid DPn of all partial isometries on {1,..., n} and for its submonoid ODPn of all order-preserving partial isometries.