911 resultados para Optimality Condition
Resumo:
This work considers nonsmooth optimal control problems and provides two new sufficient conditions of optimality. The first condition involves the Lagrange multipliers while the second does not. We show that under the first new condition all processes satisfying the Pontryagin Maximum Principle (called MP-processes) are optimal. Conversely, we prove that optimal control problems in which every MP-process is optimal necessarily obey our first optimality condition. The second condition is more natural, but it is only applicable to normal problems and the converse holds just for smooth problems. Nevertheless, it is proved that for the class of normal smooth optimal control problems the two conditions are equivalent. Some examples illustrating the features of these sufficient concepts are presented. © 2012 Springer Science+Business Media New York.
Resumo:
* This work was completed while the author was visiting the University of Limoges. Support from the laboratoire “Analyse non-linéaire et Optimisation” is gratefully acknowledged.
Resumo:
2000 Mathematics Subject Classification: Primary 90C29; Secondary 49K30.
Resumo:
Mathematical programming problems with equilibrium constraints (MPEC) are nonlinear programming problems where the constraints have a form that is analogous to first-order optimality conditions of constrained optimization. We prove that, under reasonable sufficient conditions, stationary points of the sum of squares of the constraints are feasible points of the MPEC. In usual formulations of MPEC all the feasible points are nonregular in the sense that they do not satisfy the Mangasarian-Fromovitz constraint qualification of nonlinear programming. Therefore, all the feasible points satisfy the classical Fritz-John necessary optimality conditions. In principle, this can cause serious difficulties for nonlinear programming algorithms applied to MPEC. However, we show that most feasible points do not satisfy a recently introduced stronger optimality condition for nonlinear programming. This is the reason why, in general, nonlinear programming algorithms are successful when applied to MPEC.
Resumo:
This paper adjusts decentralized OPF optimization to the AC power flow problem in power systems with interconnected areas operated by diferent transmission system operators (TSO). The proposed methodology allows finding the operation point of a particular area without explicit knowledge of network data of the other interconnected areas, being only necessary to exchange border information related to the tie-lines between areas. The methodology is based on the decomposition of the first-order optimality conditions of the AC power flow, which is formulated as a nonlinear programming problem. To allow better visualization of the concept of independent operation of each TSO, an artificial neural network have been used for computing border information of the interconnected TSOs. A multi-area Power Flow tool can be seen as a basic building block able to address a large number of problems under a multi-TSO competitive market philosophy. The IEEE RTS-96 power system is used in order to show the operation and effectiveness of the decentralized AC Power Flow. ©2010 IEEE.
Resumo:
In this work we introduce a relaxed version of the constant positive linear dependence constraint qualification (CPLD) that we call RCPLD. This development is inspired by a recent generalization of the constant rank constraint qualification by Minchenko and Stakhovski that was called RCRCQ. We show that RCPLD is enough to ensure the convergence of an augmented Lagrangian algorithm and that it asserts the validity of an error bound. We also provide proofs and counter-examples that show the relations of RCRCQ and RCPLD with other known constraint qualifications. In particular, RCPLD is strictly weaker than CPLD and RCRCQ, while still stronger than Abadie's constraint qualification. We also verify that the second order necessary optimality condition holds under RCRCQ.
Resumo:
We present a remote sensing observational method for the measurement of the spatio-temporal dynamics of ocean waves. Variational techniques are used to recover a coherent space-time reconstruction of oceanic sea states given stereo video imagery. The stereoscopic reconstruction problem is expressed in a variational optimization framework. There, we design an energy functional whose minimizer is the desired temporal sequence of wave heights. The functional combines photometric observations as well as spatial and temporal regularizers. A nested iterative scheme is devised to numerically solve, via 3-D multigrid methods, the system of partial differential equations resulting from the optimality condition of the energy functional. The output of our method is the coherent, simultaneous estimation of the wave surface height and radiance at multiple snapshots. We demonstrate our algorithm on real data collected off-shore. Statistical and spectral analysis are performed. Comparison with respect to an existing sequential method is analyzed.
Resumo:
2000 Mathematics Subject Classification: 46A30, 54C60, 90C26.
Resumo:
In this work, we introduce a necessary sequential Approximate-Karush-Kuhn-Tucker (AKKT) condition for a point to be a solution of a continuous variational inequality, and we prove its relation with the Approximate Gradient Projection condition (AGP) of Garciga-Otero and Svaiter. We also prove that a slight variation of the AKKT condition is sufficient for a convex problem, either for variational inequalities or optimization. Sequential necessary conditions are more suitable to iterative methods than usual punctual conditions relying on constraint qualifications. The AKKT property holds at a solution independently of the fulfillment of a constraint qualification, but when a weak one holds, we can guarantee the validity of the KKT conditions.
Resumo:
This paper investigates the optimality of the Friedman rule in a two-sector small open economy. That policy prescription is found to be a necessary condition for Pareto efficiency. If a planner can select all conceivable distorting taxes, then, for some initial values of public debt, money balances and foreign assets, it is possible to decentralize a Pareto efficient allocation. If the planner can select only some of these tax rates, then second-best policies may also satisfy the Friedman rule. However, this last result depends on the set of tax instruments the planner can choose from.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A vector-valued impulsive control problem is considered whose dynamics, defined by a differential inclusion, are such that the vector fields associated with the singular term do not satisfy the so-called Frobenius condition. A concept of robust solution based on a new reparametrization procedure is adopted in order to derive necessary conditions of optimality. These conditions are obtained by taking a limit of those for an appropriate sequence of auxiliary standard optimal control problems approximating the original one. An example to illustrate the nature of the new optimality conditions is provided. © 2000 Elsevier Science B.V. All rights reserved.
Resumo:
This article presents and discusses necessary conditions of optimality for infinite horizon dynamic optimization problems with inequality state constraints and set inclusion constraints at both endpoints of the trajectory. The cost functional depends on the state variable at the final time, and the dynamics are given by a differential inclusion. Moreover, the optimization is carried out over asymptotically convergent state trajectories. The novelty of the proposed optimality conditions for this class of problems is that the boundary condition of the adjoint variable is given as a weak directional inclusion at infinity. This improves on the currently available necessary conditions of optimality for infinite horizon problems. © 2011 IEEE.
Resumo:
In this article we introduce the concept of MP-pseudoinvexity for general nonlinear impulsive optimal control problems whose dynamics are specified by measure driven control equations. This is a general paradigm in that, both the absolutely continuous and singular components of the dynamics depend on both the state and the control variables. The key result consists in showing the sufficiency for optimality of the MP-pseudoinvexity. It is proved that, if this property holds, then every process satisfying the maximum principle is an optimal one. This result is obtained in the context of a proper solution concept that will be presented and discussed. © 2012 IEEE.
Resumo:
This investigation aimed at assessing the extent to which memory from practice in a specific condition of target displacement modulates temporal errors and movement timing of interceptive movements. We compared two groups practicing with certainty of future target velocity either in unchanged target velocity or in target velocity decrease. Following practice, both experimental groups were probed in the situations of unchanged target velocity and target velocity decrease either under the context of certainty or uncertainty about target velocity. Results from practice showed similar improvement of temporal accuracy between groups, revealing that target velocity decrease did not disturb temporal movement organization when fully predictable. Analysis of temporal errors in the probing trials indicated that both groups had higher timing accuracy in velocity decrease in comparison with unchanged velocity. Effect of practice was detected by increased temporal accuracy of the velocity decrease group in situations of decreased velocity; a trend consistent with the expected effect of practice was observed for temporal errors in the unchanged velocity group and in movement initiation at a descriptive level. An additional point of theoretical interest was the fast adaptation in both groups to a target velocity pattern different from that practiced. These points are discussed under the perspective of integration of vision and motor control by means of an internal forward model of external motion.