986 resultados para Optical device fabrication
Resumo:
Microfabrication of photonic devices by means of femtosecond (fs) laser pulses is reviewed. Adaptive modeling of fs laser pulse propagation was performed for detailed study of different regimes. Submicron structures are demonstrated in both infrared and UV ranges. Applications to fibre based devices and prototype integrated planar devices are discussed. © 2007 Optical Society of America.
Resumo:
This dissertation studies the manipulation of particles using acoustic stimulation for applications in microfluidics and templating of devices. The term particle is used here to denote any solid, liquid or gaseous material that has properties, which are distinct from the fluid in which it is suspended. Manipulation means to take over the movements of the particles and to position them in specified locations. Using devices, microfabricated out of silicon, the behavior of particles under the acoustic stimulation was studied with the main purpose of aligning the particles at either low-pressure zones, known as the nodes or high-pressure zones, known as anti-nodes. By aligning particles at the nodes in a flow system, these particles can be focused at the center or walls of a microchannel in order to ultimately separate them. These separations are of high scientific importance, especially in the biomedical domain, since acoustopheresis provides a unique approach to separate based on density and compressibility, unparalleled by other techniques. The study of controlling and aligning the particles in various geometries and configurations was successfully achieved by controlling the acoustic waves. Apart from their use in flow systems, a stationary suspended-particle device was developed to provide controllable light transmittance based on acoustic stimuli. Using a glass compartment and a carbon-particle suspension in an organic solvent, the device responded to acoustic stimulation by aligning the particles. The alignment of light-absorbing carbon particles afforded an increase in visible light transmittance as high as 84.5%, and it was controlled by adjusting the frequency and amplitude of the acoustic wave. The device also demonstrated alignment memory rendering it energy-efficient. A similar device for suspended-particles in a monomer enabled the development of electrically conductive films. These films were based on networks of conductive particles. Elastomers doped with conductive metal particles were rendered surface conductive at particle loadings as low as 1% by weight using acoustic focusing. The resulting films were flexible and had transparencies exceeding 80% in the visible spectrum (400-800 nm) These films had electrical bulk conductivities exceeding 50 S/cm.
Resumo:
This paper presents microlenses (MLs) with low f-number made of AZ4562 photoresist for integration on optical microsystems. The fabrication process was based on the thermal reflow and rehydration. Large series of MLs were fabricated with a width of 35 μm, a thickness of 5 μm, and spaced apart by 3 μm. The MLs were fabricated directly on the surface of a die with type n+/p-substrate junction photodiode fabricated in a standard CMOS process. The measured focal length was 49 μm with a tolerance of ±2 μm (maximum error of ±4%), resulting in a numerical aperture of 33.6 × 10-2 (±1.3 × 10-2). The measurements also revealed an f-number of 1.4.
Resumo:
As emphasis towards sustainable and Renewable energy resources grows world-wide,interest in the capture and use of solar energy is increasing dramatically.Solar cells have been known and used for many years,but depletion of conventional energy resources resulted in the intensification of research on solar cells leading to new design and technique of fabrication.The current emphasis is directed towards high effiency inexpensive solar cells.This thesis includes deposition and characterization of CuInS2 and In2S3 thin films using chemical Spray Pyrolysis(CSP) technique.The optimum condition for these films to be used as absorber and buffer layer respectively in solar cells were thus found out.Solar cell with the stucture,ITO/CuInS2/In2S3/metal electrode was fabricated using these well-characterized films,which yielded an efficiency of 9.5%.
Resumo:
In this work. Sub-micrometre thick CulnSe2 films were prepared using different
techniques viz, selenization through chemically deposited Selenium and Sequential
Elemental Evaporation. These methods
are simpler than co-evaporation technique, which is known to be the most suitable
one for CulnSe2 preparation. The films were optimized by varying the composition
over a wide range to find optimum properties for device fabrication. Typical absorber
layer thickness of today's solar cell ranges from 2-3m. Thinning of the absorber
layer is one of the challenges to reduce the processing time and material usage,
particularly of Indium. Here we made an attempt to fabricate solar cell with absorber
layer of thickness
Resumo:
As the area of nanotechnology continues to grow, the development of new nanomaterials with interesting physical and electronic properties and improved characterization techniques are several areas of research that will be remain vital for continued improvement of devices and the understanding in nanoscale phenomenon. In this dissertation, the chemical vapor deposition synthesis of rare earth (RE) compounds is described in detail. In general, the procedure involves the vaporization of a REClx (RE = Y, La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho) in the presence of hydride phase precursors such as decaborane and ammonia at high temperatures and low pressures. The vapor-liquid-solid mechanism was used in combination with the chemical vapor deposition process to synthesize single crystalline rare earth hexaboride nanostructures. The crystallographic orientation of as-synthesized rare earth hexaboride nanostructures and gadolinium nitride thin films was controlled by judicious choice of specific growth substrates and modeled by analyzing x-ray diffraction powder patterns and crystallographic models. The rare earth hexaboride nanostructures were then implemented into two existing technologies to enhance their characterization capabilities. First, the rare earth hexaboride nanowires were used as a test material for the development of a TEM based local electrode atom probe tomography (LEAP) technique. This technique provided some of the first quantitative compositional information of the rare earth hexaboride systems. Second, due to the rigidity and excellent conductivity of the rare earth hexaborides, nanostructures were grown onto tungsten wires for the development of robust, oxidation resistant nanomanipulator electronic probes for semiconductor device failure analysis.
Resumo:
"Issued May 1980."
Resumo:
We describe the linear and nonlinear transfer characteristics of a multi-resonance optical device consisting of two ring resonators coupled one to another and to a waveguide. The propagation effects displayed by the device are compared with those of a sequence of a waveguide-coupled fundamental ring resonators.
Resumo:
Using the principle of quasi-continuous filtering in a non-linear fibre, we propose an optical device for the simultaneous regeneration of sevaral channels at 40 Gbit/s. Simulations predict an improvement of the signal quality for four channels by more than 6.8 dB.
Resumo:
Background: A new commercially available device (IOLMaster, Zeiss Instruments) provides high resolution non-contact measurements of axial length (using partial coherent interferometry), anterior chamber depth, and corneal radius (using image analysis). The study evaluates the validity and repeatability of these measurements and compares the findings with those obtained from instrumentation currently used in clinical practice. Method: Measurements were taken on 52 subjects (104 eyes) aged 18-40 years with a range of mean spherical refractive error from +7.0 D to -9.50 D. IOLMaster measurements of anterior chamber depth and axial length were compared with A-scan applanation ultrasonography (Storz Omega) and those for corneal radius with a Javal-Schiötz keratometer (Topcon) and an EyeSys corneal videokeratoscope. Results: Axial length: the difference between IOLMaster and ultrasound measures was insignificant (0.02 (SD 0.32) mm, p = 0.47) with no bias across the range sampled (22.40-27.99 mm). Anterior chamber depth: significantly shorter depths than ultrasound were found with the IOLMaster (-0.06 (0.25) mm, p <0.02) with no bias across the range sampled (2.85-4.40 mm). Corneal radius: IOLMaster measurements matched more closely those of the keratometer than those of the videokeratoscope (mean difference -0.03 v -0.06 mm respectively), but were more variable (95% confidence 0.13 v 0.07 mm). The repeatability of all the above IOLMaster biometric measures was found to be of a high order with no significant bias across the measurement ranges sampled. Conclusions: The validity and repeatability of measurements provided by the IOLMaster will augment future studies in ocular biometry.
Resumo:
We describe the linear and nonlinear optical transfer characteristics of a multi-resonance device consisting of two optical ring resonators coupled one to the other and to an optical waveguide. The propagation effects displayed by the device are compared with those of a sequence of fundamental ring resonators coupled to a waveguide.
Resumo:
Using the principle of quasi-continuous filtering in a non-linear fibre, we propose an optical device for the simultaneous regeneration of sevaral channels at 40 Gbit/s. Simulations predict an improvement of the signal quality for four channels by more than 6.8 dB.