940 resultados para Opioid receptors
Resumo:
Opioids are important endogenous ligands that exist in both invertebrates and vertebrates and signal by activation of opioid receptors to produce analgesia and reward or pleasure. The μ-opioid receptor is the best known of the opioid receptors and mediates the acute analgesic effects of opiates, while the δ-opioid receptor (DOR) has been less well studied and has been linked to effects that follow from chronic use of opiates such as stress, inflammation and anxiety. Recently, DORs have been shown to play an essential role in emotions and increasing evidence points to a role in learning actions and outcomes. The process of learning and memory in addiction has been proposed to involve strengthening of specific brain circuits when a drug is paired with a context or environment. The DOR is highly expressed in the hippocampus, amygdala, striatum and other basal ganglia structures known to participate in learning and memory. In this review, we will focus on the role of the DOR and its potential role in learning and memory underlying the development of addiction.
Resumo:
The presence of endogenous opioid peptides in different testicular cell types has been extensively characterized and provides evidence for the participation of the opioid system in the regulation of testicular function. However, the exact role of the opioid system during the spermatogenesis has remained controversial since the presence of the mu-, delta-and kappa-opioid receptors in spermatogenic cells was yet to be demonstrated. Through a combination of quantitative real-time PCR, immunofluorescence, immunohistochemistry and flow cytometry approaches, we report for the first time the presence of active mu-, deltaand kappa-opioid receptors in mouse male germ cells. They show an exposition time-dependent response to opioid agonist, hence suggesting their active involvement in spermatogenesis. Our results contribute to understanding the role of the opioid receptors in the spermatogenesis and could help to develop new strategies to employ the opioid system as a biochemical tool for the diagnosis and treatment of male infertility.
Resumo:
The opioid receptors consist of three main subtypes; μ, δ, and κ. Previous binding studies have shown that fragments of the milk protein, β-casein, known as β-casomorphins are agonists of these receptors which are selective for the μ receptor subtype. Using the crystal structures of these three receptors, computational molecular docking studies were done using the software GOLD to determine the conformation of β-casomorphin-5 and 7 when they bind to these three opioid receptors. GOLD was able to discriminate among the three receptors when docking the rigid ligands co-crystalized with the receptors. However, GOLD could not discriminate among the three receptors for either of the highly flexible β-casomorphins. A per amino acid scoring method was developed to overcome this problem. This method was used to predict the conformation of both β-casomorphin-5 and 7 in the μ receptor and determine that the two amino acid residues, Lys303 and Trp318 of the μ receptor are responsible for discriminating among the three receptor subtypes for binding of the β-casomorphin-5 and 7.
Resumo:
Neuropathic pain is an important clinical problem and it is usually resistant to the current therapy. We have recently characterized a novel analgesic peptide, crotalphine, from the venom of the South American rattlesnake Crotalus durissus terrificus. In the present work, the antinociceptive effect of crotalphine was evaluated in an experimental model of neuropathic pain induced in rats by chronic constriction, of sciatic nerve. The effect of the peptide was compared to that induced by the crude venom, which confirmed that crotalphine is responsible for the antinociceptive effect of the crotalid venom on neuropathic pain. For characterization of neuropathic pain, the presence of hyperalgesia, allodynia and spontaneous pain was assessed at different times after nerve constriction. These phenomena were detected 24 h after surgery and persisted at least for 14 days. The pharmacological treatments were performed on day 14 after surgery. Crotalphine (0.2-5 mu g/kg) and the crude venom (400-1600 mu g/kg) administered p.o. inhibited hyperalgesia, allodynia and spontaneous pain induced by nerve constriction. The antinociceptive effect of the peptide and crude venom was long lasting, since it was detected up to 3 days after treatment. Intraplantar injection of naloxone (1 mu g/paw) blocked the antinociceptive effect, indicating the involvement of opioid receptors in this phenomenon. Gabapentin (200 mg/kg, p.o.), and morphine (5 mg/kg, s.c.), used as positive controls, blocked hyperalgesia and partially inhibited allodynia induced by nerve constriction. These data indicate that crotalphine induces a potent and long lasting opioid antinociceptive effect in neuropathic pain that surpasses that observed with standard analgesic drugs. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The involvement of opioid receptors in the analgesic response was evaluated by the tail-immersion test in simultaneously adrenalectomized and ovariectomized female Wistar rats (210-250 g). The reaction time (mean +/- SEM) for tail withdrawal from hot water decreased significantly 2 weeks after surgery (3.52 +/- 0.20 s) when compared to intact animals (6.09 +/- 0.23 s). Hormonal replacement with dexamethasone (50-mu-g/day) did not affect reaction time (3.38 +/- 0.19 s). However, this response was restored by combined adrenal and gonadal steroid substitution (estradiol 5-mu-g/day and progesterone 1.5-mu-g 6 h before the tests) therapy (5.11 +/- 0.45 s in animals treated with dexamethasone plus estradiol and 5.04 +/- 0.43 s in animals treated with dexamethasone plus estradiol plus progesterone). Naloxone (2 mg/kg) decreased the reaction time of animals treated with adrenal and gonadal steroids (5.11 +/- 0.45 vs 4.15 +/- 0.44 s and 5.04 +/- 0.43 vs 3.87 +/- 0.28 s, respectively, before and after naloxone) but failed to decrease it in rats treated with dexamethasone only (3.88 +/- 0.18 vs 4.34 +/- 0.25 s, before and after naloxone). These observations indicate that gonadal steroids are the most important steroid factors involved in the reaction time to tail immersion in hot water and confirm other reports that the opioid pathways modulating the neuronal circuitry require the presence of these hormones.
Resumo:
Fencamfamine (FCF) is a psychostimulant classified as an indirect dopamine agonist. The conditioning place preference (CPP) paradigm was used to investigate the reinforcing properties of FCF. After initial preferences had been determined, animals were conditioned with FCF (1.75, 3.5, or 7.0 mg/kg; IP). Only at the dose of 3.5 mg/kg FCF produced a significant place preference. Pretreatment with SCH23390 (0.05 mg/kg, SC) or naloxone (1.0 mg/kg SC) 10 min before FCF (3.5 mg/kg; IP) blocked both FCF-induced hyperactivity and CPP. Pretreatment with metoclopramide (10.0 mg/kg; IP) or pimozide (1.0 mg/kg, IP), respectively, 30 min or 4 h before FCF (3.5 mg/kg; IP), which blocked the FCF-induced locomotor activity, failed to influence place conditioning produced by FCF. In conclusion, the present study suggests that dopamine D 1 and opioid receptors are related to FCF reinforcing effect, while dopamine D 2 subtype receptor was ineffective in modifying FCF-induced CPP.
Resumo:
Cancer pain is an important clinical problem and may not respond satisfactorily to the current analgesic therapy. We have characterized a novel and potent analgesic peptide, crotalphine, from the venom of the South American rattlesnake Crotalus durissus terrificus. In the present work, the antinociceptive effect of crotalphine was evaluated in a rat model of cancer pain induced by intraplantar injection of Walker 256 carcinoma cells. Intraplantar injection of tumor cells caused the development of hyperalgesia and allodynia, detected on day 5 after tumor cell inoculation. Crotalphine (6 μg/kg), administered p.o., blocked both phenomena. The antinociceptive effect was detected 1 h after treatment and lasted for up to 48 h. Intraplantar injection of nor-binaltorphimine (50 g/paw), a selective antagonist of κ-opioid receptors, antagonized the antinociceptive effect of the peptide, whereas N,N-diallyl-Tyr-Aib-Phe-Leu (ICI 174,864, 10 μg/paw), a selective antagonist of δ-opioid receptors, partially reversed this effect. On the other hand, D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr amide (CTOP, 20 g/paw), an antagonist of μ-opioid receptors, did not modify crotalphine-induced antinociception. These data indicate that crotalphine induces a potent and long lasting opioid-mediated antinociception in cancer pain. © 2013 Elsevier Inc.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
PURPOSE: To investigate the effect of the opioid blocker naltrexone in the inflammatory response in acute pancreatitis (AP). METHODS: Acute pancreatitis was induced in anesthetized male Wistar rats by retrograde injection of 2.5% sodium taurocholate diluted in 0.5ml saline into the main pancreatic duct. Animals were randomized to the following experimental groups: Control Group (n=9): animals received an intraperitoneal injection of saline solution (0.5ml), 15 minutes before the induction of AP. Naltrexone Group (n=9): animals received an intraperitoneal injection of naltrexone 0.5ml (15 mg/kg), 15 minutes before induction of AP. Peritoneal levels of TNF-alpha and serum levels of IL-6 and amylase were determined The volume of the ascitic fluid was also evaluated. Myeloperoxidase (MPO) activities were analyzed in homogenates of pulmonary tissue. RESULTS: There were no significant differences in the ascitic fluid volume, nor in TNF-alpha and IL-6 levels in the naltrexone group compared to controls. Treatment with naltrexone did not affect the lung MPO activity compared to control group. CONCLUSIONS: The opioid receptors don't play an important role in the pathogenesis of the inflammatory response in acute pancreatitis. If opioids affect leukocytes inflammatory signaling, there are no major implications in the pathogenesis of acute pancreatitis.
Resumo:
The present work aimed to investigate the effects of acute sucrose treatment on the perception of painful stimuli. Specifically, we sought to determine the involvement of the endogenous opioid peptide-mediated system as well as the role of the mu(1)-opioid receptor in antinociception organisation induced by acute sucrose intake. Nociception was assessed with the tail-flick test in rats (75, 150 and 250 g) of different ages acutely pre-treated with 500 mu L. of a sucrose solution (25, 50, 150 and 250 g/L) or tap water. Young and Adult rats (250 g) showed antinociception after treatment with 50 g/L (during 5 min) and 150 g/L and 250 g/L (during 20 min) sucrose solutions. Surprisingly, this antinociception was more consistent in mature adult rodents than in pups. To evaluate the role of opioid systems, mature adult rodents were pre-treated with different doses (0.25, 1 or 4mg/kg) of the non-selective opioid receptor antagonist naloxone, the selective pi-opioid receptor antagonist naloxonazine or vehicle followed by 250 g/L sucrose solution treatment. Sucrose-induced antinociception was reduced by pre-treatment with both naloxone and naloxonazine. The present findings suggest that sweet substance-induced hypo-analgesia is augmented by increasing sucrose concentrations in young and adult rodents. Acute oral sucrose treatment inhibits pain in laboratory animal by mediating endogenous opioid peptide and mu(1)-opioid receptor actions. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Background: In addition to their central effects, opioids cause peripheral analgesia. There is evidence showing that peripheral activation of kappa opioid receptors (KORs) inhibits inflammatory pain. Moreover, peripheral mu-opioid receptor (MOR) activation are able to direct block PGE(2)-induced ongoing hyperalgesia However, this effect was not tested for KOR selective activation. In the present study, the effect of the peripheral activation of KORs on PGE(2)-induced ongoing hyperalgesia was investigated. The mechanisms involved were also evaluated. Results: Local (paw) administration of U50488 (a selective KOR agonist) directly blocked, PGE(2)-induced mechanical hyperalgesia in both rats and mice. This effect was reversed by treating animals with L-NMMA or N-propyl-L-arginine (a selective inhibitor of neuronal nitric oxide synthase, nNOS), suggesting involvement of the nNOS/NO pathway. U50488 peripheral effect was also dependent on stimulation of PI3K gamma/AKT because inhibitors of these kinases also reduced peripheral antinociception induced by U50488. Furthermore, U50488 lost its peripheral analgesic effect in PI3K gamma null mice. Observations made in vivo were confirmed after incubation of dorsal root ganglion cultured neurons with U50488 produced an increase in the activation of AKT as evaluated by western blot analyses of its phosphorylated form. Finally, immunofluorescence of DRG neurons revealed that KOR-expressing neurons also express PI3K gamma (congruent to 43%). Conclusions: The present study indicates that activation of peripheral KORs directly blocks inflammatory hyperalgesia through stimulation of the nNOS/NO signaling pathway which is probably stimulated by PI3K gamma/AKT signaling. This study extends a previously study of our group suggesting that PI3K gamma/AKT/nNOS/NO is an important analgesic pathway in primary nociceptive neurons.
Resumo:
Abstract Background In addition to their central effects, opioids cause peripheral analgesia. There is evidence showing that peripheral activation of kappa opioid receptors (KORs) inhibits inflammatory pain. Moreover, peripheral μ-opioid receptor (MOR) activation are able to direct block PGE2-induced ongoing hyperalgesia However, this effect was not tested for KOR selective activation. In the present study, the effect of the peripheral activation of KORs on PGE2-induced ongoing hyperalgesia was investigated. The mechanisms involved were also evaluated. Results Local (paw) administration of U50488 (a selective KOR agonist) directly blocked, PGE2-induced mechanical hyperalgesia in both rats and mice. This effect was reversed by treating animals with L-NMMA or N-propyl-L-arginine (a selective inhibitor of neuronal nitric oxide synthase, nNOS), suggesting involvement of the nNOS/NO pathway. U50488 peripheral effect was also dependent on stimulation of PI3Kγ/AKT because inhibitors of these kinases also reduced peripheral antinociception induced by U50488. Furthermore, U50488 lost its peripheral analgesic effect in PI3Kγ null mice. Observations made in vivo were confirmed after incubation of dorsal root ganglion cultured neurons with U50488 produced an increase in the activation of AKT as evaluated by western blot analyses of its phosphorylated form. Finally, immunofluorescence of DRG neurons revealed that KOR-expressing neurons also express PI3Kγ (≅ 43%). Conclusions The present study indicates that activation of peripheral KORs directly blocks inflammatory hyperalgesia through stimulation of the nNOS/NO signaling pathway which is probably stimulated by PI3Kγ/AKT signaling. This study extends a previously study of our group suggesting that PI3Kγ/AKT/nNOS/NO is an important analgesic pathway in primary nociceptive neurons.