993 resultados para Open ball valves
Resumo:
Friction loss coefficients for laminar flow of xantan gum solutions (concentrations in the range of 0.1-0.5% by weight) through valves and fittings were experimentally determined. The rheological behavior, studied by means of a concentric cylinder rheometer, was pseudoplastic, being well described by the Ostwald-De Waele model with non-linear correlation coefficients (r) between 0.998 and 0.999. In the pressure drop measurements the following fittings were employed: completely open and half way open ball valve, completely open and half way open angle valve, tee used like coupling, tee used like a 90° elbow, short radius 90° elbow and coupling. The results showed that the friction loss coefficients increased with decreasing generalized Reynolds number. The friction loss coefficients could be well adjusted by a potential model, suggested by Kittredge & Rowley (1957) for Newtonian fluids, K f = A(Re g) -B, with correlation coefficients between 0.837 and 0.999.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Selective isoelectric whey protein precipitation and aggregation is carried out at laboratory scale in a standard configuration batch agitation vessel. Geometric scale-up of this operation is implemented on the basis of constant impeller power input per unit volume and subsequent clarification is achieved by high speed disc-stack centrifugation. Particle size and fractal geometry are important in achieving efficient separation while aggregates need to be strong enough to resist the more extreme levels of shear that are encountered during processing, for example through pumps, valves and at the centrifuge inlet zone. This study investigates how impeller agitation intensity and ageing time affect aggregate size, strength, fractal dimension and hindered settling rate at laboratory scale in order to determine conditions conducive for improved separation. Particle strength is measured by observing the effects of subjecting aggregates to moderate and high levels of process shear in a capillary rig and through a partially open ball-valve respectively. The protein precipitate yield is also investigated with respect to ageing time and impeller agitation intensity. A pilot scale study is undertaken to investigate scale-up and how agitation vessel shear affects centrifugal separation efficiency. Laboratory scale studies show that precipitates subject to higher impeller shear-rates during the addition of the precipitation agent are smaller but more compact than those subject to lower impeller agitation and are better able to resist turbulent breakage. They are thus more likely to provide a better feed for more efficient centrifugal separation. Protein precipitation yield improves significantly with ageing, and 50 minutes of ageing is required to obtain a 70 - 80% yield of α-lactalbumin. Geometric scale-up of the agitation vessel at constant power per unit volume results in aggregates of broadly similar size exhibiting similar trends but with some differences due to the absence of dynamic similarity due to longer circulation time and higher tip speed in the larger vessel. Disc stack centrifuge clarification efficiency curves show aggregates formed at higher shear-rates separate more efficiently, in accordance with laboratory scale projections. Exposure of aggregates to highly turbulent conditions, even for short exposure times, can lead to a large reduction in particle size. Thus, improving separation efficiencies can be achieved by the identification of high shear zones in a centrifugal process and the subsequent elimination or amelioration of such.
Resumo:
The off-cycle refrigerant mass migration has a direct influence on the on-cycle performance since compressor energy is necessary to redistribute the refrigerant mass. No studies, as of today, are available in the open literature which experimentally measured the lubricant migration within a refrigeration system during cycling or stop/start transients. Therefore, experimental procedures measuring the refrigerant and lubricant migration through the major components of a refrigeration system during stop/start transients were developed and implemented. Results identifying the underlying physics are presented. The refrigerant and lubricant migration of an R134a automotive A/C system-utilizing a fixed orifice tube, minichannel condenser, plate and fin evaporator, U-tube type accumulator and fixed displacement compressor-was measured across five sections divided by ball valves. Using the Quick-Closing Valve Technique (QCVT) combined with the Remove and Weigh Technique (RWT) using liquid nitrogen as the condensing agent resulted in a measurement uncertainty of 0.4 percent regarding the total refrigerant mass in the system. The determination of the lubricant mass distribution was achieved by employing three different techniques-Remove and Weigh, Mix and Sample, and Flushing. To employ the Mix and Sample Technique a device-called the Mix and Sample Device-was built. A method to separate the refrigerant and lubricant was developed with an accuracy-after separation-of 0.04 grams of refrigerant left in the lubricant. When applying the three techniques, the total amount of lubricant mass in the system was determined to within two percent. The combination of measurement results-infrared photography and high speed and real time videography-provide unprecedented insight into the mechanisms of refrigerant and lubricant migration during stop-start operation. During the compressor stop period, the primary refrigerant mass migration is caused by, and follows, the diminishing pressure difference across the expansion device. The secondary refrigerant migration is caused by a pressure gradient as a result of thermal nonequilibrium within the system and causes only vapor phase refrigerant migration. Lubricant migration is proportional to the refrigerant mass during the primary refrigerant mass migration. During the secondary refrigerant mass migration lubricant is not migrating. The start-up refrigerant mass migration is caused by an imbalance of the refrigerant mass flow rates across the compressor and expansion device. The higher compressor refrigerant mass flow rate was a result of the entrainment of foam into the U-tube of the accumulator. The lubricant mass migration during the start-up was not proportional to the refrigerant mass migration. The presence of water condensate on the evaporator affected the refrigerant mass migration during the compressor stop period. Caused by an evaporative cooling effect the evaporator held 56 percent of the total refrigerant mass in the system after three minutes of compressor stop time-compared to 25 percent when no water condensate was present on the evaporator coil. Foam entrainment led to a faster lubricant and refrigerant mass migration out of the accumulator than liquid entrainment through the hole at the bottom of the U-tube. The latter was observed for when water condensate was present on the evaporator coil because-as a result of the higher amount of refrigerant mass in the evaporator before start-up-the entrainment of foam into the U-tube of the accumulator ceased before the steady state refrigerant mass distribution was reached.
Resumo:
Let where be a set of points in d-dimensional space with a given metric rho. For a point let r (p) be the distance of p with respect to rho from its nearest neighbor in Let B(p,r (p) ) be the open ball with respect to rho centered at p and having the radius r (p) . We define the sphere-of-influence graph (SIG) of as the intersection graph of the family of sets Given a graph G, a set of points in d-dimensional space with the metric rho is called a d-dimensional SIG-representation of G, if G is isomorphic to the SIG of It is known that the absence of isolated vertices is a necessary and sufficient condition for a graph to have a SIG-representation under the L (a)-metric in some space of finite dimension. The SIG-dimension under the L (a)-metric of a graph G without isolated vertices is defined to be the minimum positive integer d such that G has a d-dimensional SIG-representation under the L (a)-metric. It is denoted by SIG (a)(G). We study the SIG-dimension of trees under the L (a)-metric and almost completely answer an open problem posed by Michael and Quint (Discrete Appl Math 127:447-460, 2003). Let T be a tree with at least two vertices. For each let leaf-degree(v) denote the number of neighbors of v that are leaves. We define the maximum leaf-degree as leaf-degree(x). Let leaf-degree{(v) = alpha}. If |S| = 1, we define beta(T) = alpha(T) - 1. Otherwise define beta(T) = alpha(T). We show that for a tree where beta = beta (T), provided beta is not of the form 2 (k) - 1, for some positive integer k a parts per thousand yen 1. If beta = 2 (k) - 1, then We show that both values are possible.
Resumo:
In this work, a volumetric unit previously assembled by the research group was upgraded. This unit revamping was necessary due to the malfunction of the solenoid valves employed in the original experimental setup, which were not sealing the gas properly leading to erroneous adsorption equilibrium measurements. Therefore, the solenoid valves were substituted by manual ball valves. After the volumetric unit improvement its operation was validated. For this purpose, the adsorption equilibrium of carbon dioxide (CO2) at 323K and 0 - 20 bar was measured on two different activated carbon samples, in the of extrudates (ANG6) and of a honeycomb monolith (ACHM). The adsorption equilibrium results were compared with data previously measured by the research group, using a high-pressure microbalance from Rubotherm GmbH (Germany) – gravimetric. The results obtained using both apparatuses are coincident thus validating the good operation of the volumetric unit upgraded in this work. Furthermore, the adsorption equilibrium of CO2 at 303K and 0 - 10 bar on Metal-Organic Frameworks (MOFs) Cu-BTC and Fe-BTC was also studied. The CO2 adsorption equilibrium results for both MOFs were compared with the literature results showing good agreement, which confirms the good quality of the experimental results obtained in the new volumetric unit. Cu-BTC sample showed significantly higher CO2 adsorption capacity when compared with the Fe-BTC sample. The revamping of the volumetric unit included a new valve configuration in order to allow testing an alternative method for the measurement of adsorption equilibrium. This new method was employed to measure the adsorption equilibrium of CO2 on ANG6 and ACHM at 303, 323 and 353K within 0-10 bar. The good quality of the obtained experimental data was testified by comparison with data previously obtained by the research group in a gravimetric apparatus.
Resumo:
[Ensian caption: "Professional star admiring on the country's leading amateurs. Fischer whisks one down the fairway while [Olin] Dutra, Chuck Kocsis and Thompson follow the bounding ball."]
Resumo:
The endeavour to obtain estimates of durability of components for use in lifecycle assessment or costing and infrastructure and maintenance planning systems is large. The factor method and the reference service life concept provide a very valuable structure, but do not resolve the central dilemma of the need to derive an extensive database of service life. Traditional methods of estimating service life, such as dose functions or degradation models, can play a role in developing this database, however the scale of the problem clearly indicates that individual dose functions cannot be derived for each component in each different local and geographic setting. Thus, a wider range of techniques is required in order to devise reference service life. This paper outlines the approaches being taken in the Cooperative Research Centre for Construction Innovation project to predict reference service life. Approaches include the development of fundamental degradation and microclimate models, the development of a situation-based reasoning ‘engine’ to vary the ‘estimator’ of service life, and the development of a database on expert performance (Delphi study). These methods should be viewed as complementary rather than as discrete alternatives. As discussed in the paper, the situation-based reasoning approach in fact has the possibility of encompassing all other methods.
Resumo:
RatSLAM is a navigation system based on the neural processes underlying navigation in the rodent brain, capable of operating with low resolution monocular image data. Seminal experiments using RatSLAM include mapping an entire suburb with a web camera and a long term robot delivery trial. This paper describes OpenRatSLAM, an open-source version of RatSLAM with bindings to the Robot Operating System framework to leverage advantages such as robot and sensor abstraction, networking, data playback, and visualization. OpenRatSLAM comprises connected ROS nodes to represent RatSLAM’s pose cells, experience map, and local view cells, as well as a fourth node that provides visual odometry estimates. The nodes are described with reference to the RatSLAM model and salient details of the ROS implementation such as topics, messages, parameters, class diagrams, sequence diagrams, and parameter tuning strategies. The performance of the system is demonstrated on three publicly available open-source datasets.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Data on pressure drop were obtained in stainless steel, sanitary fittings and valves during laminar and turbulent flow of aqueous suspensions of sucrose and bentonite. The rheological properties of these suspensions were determined and the Bingham model provided the best fitting with the experimental data. Friction losses were measured in fully- and partially-open butterfly and plug valves, bends and union. Values of loss coefficients (k(f)) were calculated and correlated as functions of the classical Reynolds number and the Reynolds number proposed by Govier and Aziz (1972) for viscoplastic fluids. The two-k method and a new proposed model presented the best adjustments for the Govier and Aziz Reynolds number, and Hedstrom and classical Reynolds numbers, respectively.
Resumo:
The Finite Element Method (FEM) is a way of numerical solution applied in different areas, as simulations used in studies to improve cardiac ablation procedures. For this purpose, the meshes should have the same size and histological features of the focused structures. Some methods and tools used to generate tetrahedral meshes are limited mainly by the use conditions. In this paper, the integration of Open Source Softwares is presented as an alternative to solid modeling and automatic mesh generation. To demonstrate its efficiency, the cardiac structures were considered as a first application context: atriums, ventricles, valves, arteries and pericardium. The proposed method is feasible to obtain refined meshes in an acceptable time and with the required quality for simulations using FEM.
Resumo:
Abstract Background Catching an object is a complex movement that involves not only programming but also effective motor coordination. Such behavior is related to the activation and recruitment of cortical regions that participates in the sensorimotor integration process. This study aimed to elucidate the cortical mechanisms involved in anticipatory actions when performing a task of catching an object in free fall. Methods Quantitative electroencephalography (qEEG) was recorded using a 20-channel EEG system in 20 healthy right-handed participants performed the catching ball task. We used the EEG coherence analysis to investigate subdivisions of alpha (8-12 Hz) and beta (12-30 Hz) bands, which are related to cognitive processing and sensory-motor integration. Results Notwithstanding, we found the main effects for the factor block; for alpha-1, coherence decreased from the first to sixth block, and the opposite effect occurred for alpha-2 and beta-2, with coherence increasing along the blocks. Conclusion It was concluded that to perform successfully our task, which involved anticipatory processes (i.e. feedback mechanisms), subjects exhibited a great involvement of sensory-motor and associative areas, possibly due to organization of information to process visuospatial parameters and further catch the falling object.
Resumo:
An exponential increase in the use of transcatheter aortic valve implantation (TAVI) in patients with severe aortic stenosis has been witnessed over the recent years. The current article reviews different areas of uncertainty related to patient selection. The use and limitations of risk scores are addressed, followed by an extensive discussion on the value of three-dimensional imaging for prosthesis sizing and the assessment of complex valve anatomy such as degenerated bicuspid valves. The uncertainty about valvular stenosis severity in patients with a mismatch between the transvalvular gradient and the aortic valve area, and how integrated use of echocardiography and computed tomographic imaging may help, is also addressed. Finally, patients referred for TAVI may have concomitant mitral regurgitation and/or coronary artery disease and the management of these patients is discussed.