690 resultados para Omega-3 fatty acid
Resumo:
Tese de dout., Ciências Biotecnológicas (Biotecnologia Vegetal), Univ. do Algarve, 2009
Resumo:
Objective: We investigated whether lifestyle-induced changes in dietary fat quality are related to Improvements on glucose metabolism disturbances in Japanese Brazilians at high risk of type 2 diabetes Methods: One hundred forty-eight first- and second-generation subjects with impaired glucose tolerance or impaired fasting glycemia who attended a lifestyle intervention program for 12 mo were studied in the city of Bauru. State of Sao Paulo, Brazil Dietary fatty acid intakes at baseline and after 12 mo were estimated using three 24-h recalls. The effect of dietary fat intake on glucose metabolism was investigated by multiple logistic regression models Results: At baseline, mean standard deviation age and body mass index were 60 II y and 25 5 4.2 kg/m2, respectively After 12 mo. 92 subjects had normal plasma glucose levels and 56 remained in prediabetic conditions. Using logistic regression models adjusted for age, gender, generation, basal intake of explanatory nutrient, energy intake, physical activity, and waist circumference, the odds ratios (95% confidence intervals) for reversion to normoglycemia were 3 14 (1 22-8 10) in the second wrote of total w-3 fatty acid, 4 26 (1.34-13 57) in the second tunic of eicosapentaenoic acid, and 280 (1 10-7.10) in the second tertile of linolenic acid. Similarly. subjects in the highest wrote of w-3.w-6 fatty acid ratio showed a higher chance of improving glucose disturbances (2 51, 1.01-6.37) Conclusions: Our findings support the evidence of an independent protective effect of omega-3 fatty acid and of a higher omega-3:omega-6 fatty acid ratio on the glucose metabolism of high-risk individuals (C) 2010 Elsevier Inc All rights reserved.
Resumo:
Objectives: The purpose of this study was to investigate what effect the ingestion of sardines, rich in omega-3 series polyunsaturated fatty acids, has on the composition of breastmilk. Methods: This was a prospective study of 31 nursing mothers under observation at the Hospital Guilherme Álvaro. Each was given 2 kg of fresh sardines twice with a 15-day interval. Milk was sampled and a 24-hour dietary recall questionnaire was applied on days 0, 15 and 30. Milk was assayed for fatty acid content by gas chromatography. Statistical analysis of the results was performed using nonparametric tests with significance set at p < 0.05. Results: The results demonstrate that the nutritional intake of the nursing mothers was adequate at all three sample points. With regard to the omega-3 series fatty acid content of the breastmilk, it was observed that regular consumption and shorter intervals between ingestion and milk collection resulted in higher concentrations of docosapentaenoic acid and docosahexaenoic acid at 15 and 30 days into the study. Fatty acids from the omega-3 and omega-6 series exhibited a significant correlation, r 2 was 0.58 and 0.59 at 15 and 30 days, respectively. Conclusion: These results suggest that incorporating fish into the diets of nursing mother during lactation, in the form of 100 g of sardines two or three times a week, contributes to an increase in omega-3 series fatty acids. Copyright © 2006 by Sociedade Brasileira de Pediatria.
Resumo:
The objective of this study was to investigate the impact of elevated tissue omega-3 (n-3) polyunsaturated fatty acids (PUFA) status on age-related glucose intolerance utilizing the fat-1 transgenic mouse model, which can endogenously synthesize n-3 PUFA from omega-6 (n-6) PUFA. Fat-1 and wild-type mice, maintained on the same dietary regime of a 10% corn oil diet, were tested at two different ages (2months old and 8months old) for various glucose homeostasis parameters and related gene expression. The older wild-type mice exhibited significantly increased levels of blood insulin, fasting blood glucose, liver triglycerides, and glucose intolerance, compared to the younger mice, indicating an age-related impairment of glucose homeostasis. In contrast, these age-related changes in glucose metabolism were largely prevented in the older fat-1 mice. Compared to the older wild-type mice, the older fat-1 mice also displayed a lower capacity for gluconeogenesis, as measured by pyruvate tolerance testing (PTT) and hepatic gene expression of phosphoenolpyruvate carboxykinase (PEPCK) and glucose 6 phosphatase (G6Pase). Furthermore, the older fat-1 mice showed a significant decrease in body weight, epididymal fat mass, inflammatory activity (NFκ-B and p-IκB expression), and hepatic lipogenesis (acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS) expression), as well as increased peroxisomal activity (70-kDa peroxisomal membrane protein (PMP70) and acyl-CoA oxidase1 (ACOX1) expression). Altogether, the older fat-1 mice exhibit improved glucose homeostasis in comparison to the older wild-type mice. These findings support the beneficial effects of elevated tissue n-3 fatty acid status in the prevention and treatment of age-related chronic metabolic diseases
Resumo:
A new cold-inducible genetic construct was cloned using a chloroplast-specific omega-3-fatty acid desaturase gene (FAD7) under the control of a cold-inducible promoter (cor15a) from Arabidopsis thaliana. RT-PCR confirmed a marked increase in FAD7 expression, in young Nicotiana tabacum (cv. Havana) plants harboring cor15a-FAD7, after a short-term exposure to cold. When young, cold-induced tobacco seedlings were exposed to low-temperature (0.5, 2 or 3.5 degrees C) for up to 44 days, survival within independent cor15a-FAD7 transgenic lines (40.2-96%) was far superior to the wild type (6.7-10.2%). In addition, the major trienoic fatty acid species remained stable in cold-induced cor15a-FAD7 N. tabacum plants under prolonged cold storage while the levels of hexadecatrienoic acid (16:3) and octadecatrienoic acid (18:3) declined in wild type plants under the same conditions (79 and 20.7% respectively). Electron microscopy showed that chloroplast membrane ultrastructure in cor15a-FAD7 transgenic plants was unaffected by prolonged exposure to cold temperatures. In contrast, wild type plants experienced a loss of granal stacking and disorganization of the thylakoid membrane under the same conditions. Changes in membrane integrity coincided with a precipitous decline in leaf chlorophyll concentration and low survival rates in wild type plants. Cold-induced double transgenic N. alata (cv. Domino Mix) plants, harboring both the cor15a-FAD7 cold-tolerance gene and a cor15a-IPT dark-tolerance gene, exhibited dramatically higher survival rates (89-90%) than wild type plants (2%) under prolonged cold storage under dark conditions (2 degrees C for 50 days).
Resumo:
Coronary heart disease (CHD) is the leading cause of death in women and rates markedly increase among women after 65 years of age. C-reactive protein (CRP) is a new clinical indicator of atherosclerotic-related inflammation with a direct pathogenic role. Studies show lifestyle factors can modulate CRP. Omega-3 fatty acids have anti-inflammatory properties and studies suggest that eating fish high in omega-3 fatty acids may lower CHD risk in women. This study sought to assess the possible role of omega-3 fatty acids in the reduction of CHD-related inflammation by investigating the effect of fish consumption on CRP levels. Methods. Twenty-four healthy postmenopausal women were randomly assigned to a fish group (usual diet plus two servings per week of enriched fish) or control group (usual diet with no fatty fish) for eight weeks. Omega-3 fatty acid-enriched fish developed by the West Virginia University Aquaculture Division was used. Serum CRP, serum interleukin-6 (IL-6), and the fatty acid content of red blood cells (RBC) were measured before and after the study. Women also completed food records. RESULTS: Baseline levels of CRP were low (85% of the fish group had normal levels) and few changes in CRP risk category were observed. Mean IL-6 levels were reduced by 27% and 35% in the fish and control groups, respectively (p for between-group difference = 0.60). Changes in RBC fatty acid composition were not statistically significant. Compared to control women, women in the fish group had greater reductions in mean triglycerides (p = 0.08), total cholesterol (P = 0.04), and LDL cholesterol levels (p = 0.06). Baseline dietary intake of total and monounsaturated fatty acids tended to be positively associated with baseline CRP, while vitamin E intake was inversely related. Saturated fat intake tended to have a positive association with IL-6. Conclusions. Findings regarding the effect of two servings of fish on CRP and IL-6 levels are inconclusive due to low baseline levels of CRP and IL-6. However, results indicate two servings of fatty fish have favorable effects on blood lipids. The relationship of dietary components with CRP and IL-6 is complex and further research is needed to determine the varying roles of diet on the inflammatory process. ^
Resumo:
Purpose of review: To provide an overview of the key earlier intervention studies with marine omega-3 fatty acids and to review and comment on recent studies reporting on mortality outcomes and on selected underlying mechanisms of action. Recent findings: Studies relating marine omega-3 fatty acid status to current or future outcomes continue to indicate benefits, for example, on incident heart failure, congestive heart failure, acute coronary syndrome, and all-cause mortality. New mechanistic insights into the actions of marine omega-3 fatty acids have been gained. Three fairly large secondary prevention trials have not confirmed the previously reported benefit of marine omega-3 fatty acids towards mortality in survivors of myocardial infarction. Studies of marine omega-3 fatty acids in atrial fibrillation and in cardiac surgery-induced atrial fibrillation have produced inconsistent findings and meta-analyses demonstrate no benefit. A study confirmed that marine omega-3 fatty acids reduce the inflammatory burden with advanced atherosclerotic plaques, so inducing greater stability. Summary: Recent studies of marine omega-3 fatty acids on morbidity of, and mortality from, coronary and cardiovascular disease have produced mixed findings. These studies raise new issues to be addressed in future research.
Resumo:
Background There is evidence for an adaptive role of the omega -3 fatty acid, docosahexaenoic acid (DHA) during stress. Mechanisms of action may involve regulation of stress mediators, such as the catecholamines and proinflammatory cytokines. Prevention of stress-induced aggression and hostility were demonstrated in a series of clinical trials. This study investigates whether perceived stress is ameliorated by DHA in stressed university staff. Methods Subjects that scored ≥ 17 on the Perceived Stress Scale were randomised into a 6-week pilot intervention study. The diet reactive group was supplemented with 6 g of fish oil containing 1.5 g per day DHA, while the placebo group was supplemented with 6 g a day of olive oil. The groups were compared with each other and a wider cross sectional study population that did not receive either active or placebo intervention. Results There was a significant reduction in perceived stress in both the fish oil and the placebo group from baseline. There was also a significant between-group difference between the fish oil group and the no-treatment controls in the rate of stress reduction (p < 0.05). However, there was not a significant between-group difference between the fish oil and the placebo group, nor the placebo group and the control group. These results are discussed in the context of several methodological limitations. The significant stress reductions in both the fish oil and the placebo group are considered in view of statistical regression, an effect likely to have been exaggerated by the time course of the study, a large placebo effect and the possibility of an active effect from the placebo. Conclusion There were significant differences (p < 0.05) in the fish oil group compared with no-treatment controls. This effect was not demonstrated in the placebo group. As a pilot study, it was not sufficiently powered to find the difference between the fish oil group and the placebo group significant. Further work needs to be undertaken to conclusively demonstrate these data trends. However, the findings from this research support the literature in finding a protective or 'adaptogenic' role for omega-3 fatty acids in stress.
Resumo:
Background: Omega-3 fatty acids (n-3) may be protective of cardiovascular risk factors for vulnerable populations. The purpose of this study was to assess the association between n-3 with, C-reactive protein (CRP), and homocysteine (HCY) in Black minorities with and without type 2 diabetes. Methods: A cross-sectional study was conducted with 406 participants: Haitian Americans (HA): n=238. African Americans (AA): n=172. Participants were recruited from a randomly generated mailing lists, local diabetes educators, community health practitioners and advertisements from 2008-2010. Sociodemographics and anthropometrics were collected and used to adjust analyses. All dietary variables were collected using the semi-quantitative food frequency questionnaire (FFQ) and used to quantify vitamin components. Blood was collected to measure CVD risk factors (blood lipids, HCY, and CRP). Results: African Americans had higher waist circumferences and C-reactive protein and consumed more calories as compared to Haitian Americans. Omega 3 fatty acid intake per calorie did not differ between these ethnicities, yet African Americans with low n-3 intake were three times more likely to have high C-reactive protein as compared to their counterparts [OR=3. 32 (1. 11, 9. 26) p=0.031]. Although homocysteine did not differ by ethnicity, African Americans with low omega 3 intake (<1 g/day) were four times as likely to have high homocysteine (>12 mg/L) as compared to their counterparts, adjusting for confounders [OR=4.63 (1.59, 12.0) p=0.004]. Consumption of n-3 by diabetes status was not associated with C-reactive protein or homocysteine levels. Conclusions: Consumption of n-3 may be protective of cardiovascular risk factors such as C-r
Resumo:
Current intakes of very long-chain omega-3 fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are low in most individuals living in Western countries. A good natural source of these fatty acids is seafood, especially oily fish. Fish oil capsules contain these fatty acids also. Very long-chain omega-3 fatty acids are readily incorporated from capsules into transport (blood lipids), functional (cell and tissue), and storage (adipose) pools. This incorporation is dose-dependent and follows a kinetic pattern that is characteristic for each pool. At sufficient levels of incorporation, EPA and DHA influence the physical nature of cell membranes and membrane protein-mediated responses, lipid-mediator generation, cell signaling, and gene expression in many different cell types. Through these mechanisms, EPA and DHA influence cell and tissue physiology and the way cells and tissues respond to external signals. In most cases the effects seen are compatible with improvements in disease biomarker profiles or health-related outcomes. As a result, very long-chain omega-3 fatty acids play a role in achieving optimal health and in protection against disease. Long-chain omega-3 fatty acids not only protect against cardiovascular morbidity but also against mortality. In some conditions, for example rheumatoid arthritis, they may be beneficial as therapeutic agents. On the basis of the recognized health improvements brought about by long-chain omega-3 fatty acids, recommendations have been made to increase their intake. The plant omega-3 fatty acid, alpha-linolenic acid (ALA), can be converted to EPA, but conversion to DHA appears to be poor in humans. Effects of ALA on human health-related outcomes appear to be due to conversion to EPA, and since this is limited, moderately increased consumption of ALA may be of little benefit in improving health outcomes compared with increased intake of preformed EPA + DHA.
Resumo:
There is interest in the enrichment of poultry meat with long-chain n-3 polyunsaturated fatty acids in order to increase the consumption of these fatty acids by humans. However, there is concern that high levels of n-3 polyunsaturated fatty acids may have detrimental effects on immune function in chickens. The effect of feeding increasing levels of fish oil (FO) on immune function was investigated in broiler chickens. Three-week-old broilers were fed 1 of 4 wheat-soybean basal diets that contained 0, 30, 50, or 60 g/kg of FO until slaughter. At slaughter, samples of blood, bursa of Fabricius, spleen, and thymus were collected from each bird. A range of immune parameters, including immune tissue weight, immuno-phenotyping, phagocytosis, and cell proliferation, were assessed. The pattern of fatty acid incorporation reflected the fatty acid composition of the diet. The FO did not affect the weight of the spleen, but it did increase thymus weight when fed at 50 g/kg (P < 0.001). Fish oil also lowered bursal weights when fed at 50 or 60 g/kg (P < 0.001). There was no significant effect of FO on immune cell phenotypes in the spleen, thymus, bursa, or blood. Feeding 60 g/kg of FO significantly decreased the percentage of monocytes engaged in phagocytosis, but it increased their mean fluorescence intensity relative to that of broilers fed 50 g/kg of FO. Lymphocyte proliferation was significantly decreased after feeding broiler chickens diets rich in FO when expressed as division index or proliferation index, although there was no significant effect of FO on the percentage of divided cells. In conclusion, dietary n-3 polyunsaturated fatty acids decrease phagocytosis and lymphocyte proliferation in broiler chickens, highlighting the need for the poultry industry to consider the health status of poultry when poultry meat is being enriched with FO.