28 resultados para OXYSTEROLS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have developed hematopoietic cells resistant to the cytotoxic effects of oxysterols. Oxysterol-resistant HL60 cells were generated by continuous exposure to three different oxysterols—25-hydroxycholesterol (25-OHC), 7-beta-hydroxycholesterol (7β-OHC) and 7-keto-cholesterol (7κ-C). We investigated the effects of 25-OHC, 7β-OHC, 7κ-C and the apoptotic agent staurosporine on these cells. The effect of the calcium channel blocker nifedipine on oxysterol cytotoxicity was also investigated. Differential display and real-time PCR were used to quantitate gene expression of oxysterol-sensitive and -resistant cells. Our results demonstrate that resistance to the cytotoxic effects of oxysterols is relatively specific to the type of oxysterol, and that the cytotoxicity of 25-OHC but not that of 7β-OHC and 7κ-C, appears to occur by a calcium dependent mechanism. Oxysterol-resistant cells demonstrated no significant difference in the expression of several genes previously implicated in oxysterol resistance, but expressed the bcl-2 gene at significantly lower levels than those observed in control cells. We identified three novel genes differentially expressed in resistant cells when compared to HL60 control cells. Taken together, the results of this study reveal potentially novel mechanisms of oxysterol cytotoxicity and resistance, and indicate that cytotoxicity of 25-OHC, 7β-OHC and 7κ-C occur by independent, yet overlapping mechanisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND Niemann-Pick type C (NP-C) is a rare progressive neurodegenerative lipid storage disorder with heterogeneous clinical presentation and challenging diagnostic procedures. Recently oxysterols have been reported to be specific biomarkers for NP-C but knowledge on the intra-individual variation and on reference intervals in children and adolescents are lacking. METHODS We established a LC-MS/MS assay to measure Cholestane-3β, 5α, 6β-triol (C-triol) and 7-Ketocholesterol (7-KC) following Steglich esterification. To assess reference intervals and intra-individual variation we determined oxysterols in 148 children and adolescents from 0 to 18 years and repeat measurements in 19 of them. RESULTS The reported method is linear (r>0.99), sensitive (detection limit of 0.03 ng/mL [0.07 nM] for C-triol, and 0.54 ng/mL [1.35 nM] for 7-KC) and precise, with an intra-day imprecision of 4.8% and 4.1%, and an inter-day imprecision of 7.0% and 11.0% for C-triol (28 ng/ml, 67 nM) and 7-KC (32 ng/ml, 80 nM), respectively. Recoveries for 7-KC and C-triol range between 93% and 107%. The upper reference limit obtained for C-triol is 40.4 ng/mL (95% CI: 26.4-61.7 ng/mL, 96.0 nM, 95% CI: 62.8-146.7 nM) and 75.0 ng/mL for 7-KC (95% CI: 55.5-102.5 ng/mL, 187.2 nM, 95% CI: 138.53-255.8 nM), with no age or gender dependency. Both oxysterols have a broad intra-individual variation of 46%±23% for C-triol and 52%±29% for 7-KC. Nevertheless, all Niemann-Pick patients showed increased C-triol levels including Niemann-Pick type A and B patients. CONCLUSIONS The LC-MS/MS assay is a robust assay to quantify C-triol and 7-KC in plasma with well documented reference intervals in children and adolescents to screen for NP-C in the pediatric population. In addition our results suggest that especially the C-triol is a biomarker for all three Niemann-Pick diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Steroidogenic factor 1 (SF-1), an orphan member of the intracellular receptor superfamily, plays an essential role in the development and function of multiple endocrine organs. It is expressed in all steroidogenic tissues where it regulates the P450 steroidogenic genes to generate physiologically active steroids. Although many of the functions of SF-1 in vivo have been defined, an unresolved question is whether a ligand modulates its transcriptional activity. Here, we show that 25-, 26-, or 27-hydroxycholesterol, known suppressors of cholesterol biosynthesis, enhance SF-1-dependent transcriptional activity. This activation is dependent upon the SF-1 activation function domain, and, is specific for SF-1 as several other receptors do not respond to these molecules. The oxysterols activate at concentrations comparable to those previously shown to inhibit cholesterol biosynthesis, and, can be derived from cholesterol by P450c27, an enzyme expressed within steroidogenic tissues. Recent studies have shown that the nuclear receptor LXR also is activated by oxysterols. We demonstrate that different oxysterols differ in their rank order potency for these two receptors, with 25-hydroxycholesterol preferentially activating SF-1 and 22(R)-hydroxycholesterol preferentially activating LXR. These results suggest that specific oxysterols may mediate transcriptional activation via different intracellular receptors. Finally, ligand-dependent transactivation of SF-1 by oxysterols may play an important role in enhancing steroidogenesis in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oxysterols (OS), the polyoxygenated sterols, represent a class of potent regulatory molecules for important biological actions. Cytotoxicity of OS is one of the most important aspects in studies of OS bioactivities. However, studies, the structure-activity relationship (SAR) study in particular, have been hampered by the limited availability of structurally diverse OS in numbers and amounts. The aim of this project was to develop robust synthetic methods for the preparation of polyhydroxyl sterols, thereof, evaluate their cytotoxicity and establish structure-activity relationship. First, we found hydrophobicity of the side chain is essential for 7-HC's cytotoxicity, and a limited number of hydroxyl groups and a desired configuration on the A, B ring are required for a potent cytotoxicity of an OS, after syntheses and tests of a number of 7-HC's analogues against cancer cell lines. Then polyoxygenation of cholesterol A, B rings was explored. A preparative method for the synthesis of four diastereomerically pure cholest-4-en-3,6-diols was developed. Epoxidation on these cholest-4-en-3,6-diols showed that an allyl group exerts an auxiliary role in producing products with desired configuration in syntheses of the eight diastereomerically pure 45-epoxycholestane-3,6-diols. Reduction of the eight 45-epoxycholestane-3,6-diols produced all eight isomers of the cytotoxic 5α-acholestane 3β,5,6β-triol (CT) for the first time. Epoxide ring opening with protic or Lewis acids on the eight 45-epoxycholestane-3,6-diols are carefully studied. The results demonstrated a combination of an acid and a solvent affected the outcomes of a reaction dramatically. Acyl group participation and migration play an important role with numbers of substrates under certain conditions. All the eight 4,5-trans cholestane- 3,4,5,6-tetrols were synthesised through manipulation of acyl participation. Furthermore these reaction conditions were tested when a number of cholestane-3,4, 5,6,7-pentols and other C3-C7 oxygenated sterols were synthesised for the first time. Introduction of an oxygenated functional group through cholest-2-ene derivatives was studied. The elimination of 3-(4-toluenesulfonate) esters showed the interaction between the existing hydroxyls or acyls with the reaction centre often resulted in different products. The allyl oxidation, epoxidation and Epoxide ring opening reactions are investigated with these cholest-2-enes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

10.00% 10.00%

Publicador:

Resumo:

ORP2 is a member of mammalian oxysterol binding protein (OSBP)-related protein/gene family (ORPs), which is found in almost every eukaryotic organism. ORPs have been suggested to participate in the regulation of cellular lipid metabolism, vesicle trafficking and cellular signaling. ORP2 is a cytosolic protein that is ubiquitously expressed and most abundant in the brain. In previous studies employing stable cell lines with constitutive ORP2 overexpression ORP2 was shown to affect cellular cholesterol metabolism. The aim of this study was to characterize the properties and function of ORP2 further. ORP2 ligands were searched for among sterols and phosphoinositides using purified ORP2 and in vitro binding assays. As expected, ORP2 bound several oxysterols and cholesterol, the highest affinity ligand being 22(R)hydroxycholesterol. In addition, affinity for anionic membrane phospholipids, phosphoinositides was observed, which may assist in the membrane targeting of ORP2. Intracellular localization of ORP2 was also investigated. ORP2 was observed on the surface of cytoplasmic lipid droplets, which are storage organelles for neutral lipids. Lipid droplet targeting of ORP2 was inhibited when 22(R)hydroxycholesterol was added to the cells or when the N-terminal FFAT-motif of ORP2 was mutated, suggesting that oxysterols and the N-terminus of ORP2 regulate the localization and the function of ORP2. The role of ORP2 in cellular lipid metabolism was studied using HeLa cell lines that can be induced to overexpress ORP2. Overexpression of ORP2 was shown to enhance cholesterol efflux from the cells resulting in a decreased amount of cellular free cholesterol. ORP2 overexpressing cells responded to the loss of cholesterol by upregulating cholesterol synthesis and uptake. Intriguingly, also cholesterol esterification was increased in ORP2 overexpressing cells. These results may be explained by the ability of ORP2 to bind and thus transport cholesterol, which most likely leads to changes in cholesterol metabolism when ORP2 is overexpressed. ORP2 function was further investigated by silencing the endogenous ORP2 expression with short interfering RNAs (siRNA) in A431 cells. Silencing of ORP2 led to a delayed break-down of triglycerides under lipolytic conditions and an increased amount of cholesteryl esters in the presence of excess triglycerides. Together these results suggest that ORP2 is a sterol-regulated protein that functions on the surface of cytoplasmic lipid droplets to regulate the metabolism of triglycerides and cholesteryl esters. Although the exact mode of ORP2 action still remains unclear, this study serves as a good basis to investigate the molecular mechanisms and possible cell type specific functions of ORP2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oxysterols are products of cholesterol oxidation, which may be produced endogenously or may be absorbed from the diet where they are commonly found in foods of animal origin. Oxysterols are known to be cyctotoxic to cells in culture and mode of toxicity has been identified as apoptosis in certain cell lines. The cytotoxicity of the oxysterols 25-hydroxycholesterol (25-OH) and 7β-hydroxycholesterol (7β-OH) was examined in two human cell lines, HepG2, a hepatoma cell line, and U937, a monocytic cell line. Both 25-OH and 7β-OH were cytotoxic to the HepG2 cell line but apoptotic cells were not detected and it was concluded that cells underwent necrosis. 25-OH was not cytotoxic to the U937 cell line but it was found to have a cytostatic effect. 7β-OH was shown to induce apoptosis in the U937 line. The mechanism of oxysterol-induced apoptosis has not yet been fully elucidated, however the generation of an oxidative stress and the depletion of glutathione have been associated with the initial stages of the apoptotic process. The concentration of cellular antioxidant enzyme, superoxide dismutase (SOD) was increased in association with 7β-OH induced apoptosis in the U937 cell line. There was no change in the glutathione concentration or the SOD activity of HepG2 cells, which underwent necrosis in the presence of 7β-OH. Many apoptotic pathways center on the activation of caspase-3, which is the key executioner protease of apoptosis. Caspase-3 activity was also shown to increase in association with 7β-OH-induced apoptosis in U937 cells but there was no significant increase in caspase-3 activity in HepG2 cells. DNA fragmentation is regarded as the biochemical hallmark of apoptosis, therefore the comet assay as a measure of DNA fragmentation was assessed as a measure of apoptosis. The level of DNA fragmentation induced by 7β-OH, as measured using the comet assay, was similar for both cell lines. Therefore, it was concluded that the comet assay could not be used to distinguish between 7β-OH-induced apoptosis in U937 cells and 7β-OH-induced necrosis in HepG2 cells. The cytotoxicity and apoptotic potency of oxysterols 25-OH, 7β-OH, cholesterol- 5a,6a-epoxide (a-epoxide), cholesterol-5β,6β-epoxide (β-epoxide), 19-hydroxy-cholesterol (19-OH), and 7-ketocholesterol (7-keto) was compared in the U937 cell line. 7 β-OH, β-epoxide and 7-keto were found to induce apoptosis in U937 cells. 7β-OH-induced apoptosis was associated with a decrease in the cellular glutathione concentration and an increase in SOD activity, 7-keto and β-epoxide did not affect the glutathione concentration or the SOD activity of the cells.a-Epoxide, 19-OH and 25-OH were not cytotoxic to the U937 cell line.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The SREBP (sterol response element binding proteins) transcription factors are central to regulating de novo biosynthesis of cholesterol and fatty acids. The SREBPs are regulated by retention or escape from the ER to the Golgi where they are proteolytically cleaved into active forms. The SREBP cleavage activating protein (SCAP) and the INSIG proteins are essential in this regulatory process. The aim of this thesis is to further characterise the molecular and cellular aspects surrounding regulation of SREBP processing. SREBP and SCAP are known to interact via their carboxy-terminal regulatory domains (CTDs) but this interaction is poorly characterised. Significant steps were achieved in this thesis towards specific mapping of the interaction site. These included cloning and over expression and partial purification of tagged SREBP1 and SREBP2 CTDs and probing of a SCAP peptide array with the CTDs. Results from the SREBP2 probing were difficult to interpret due to insolubility issues with the protein, however, probing with SREBP1 revealed five potential binding sites which were detected reproducibly. Further research is necessary to overcome SREBP2 insolubility issues and to confirm the identified SREBP1 interaction site(s) on SCAP. INSIG1 has a central role in regulating SREBP processing and in regulating stability of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR), a rate limiting enzyme in cholesterol biosynthesis. There are two protein isoforms of human INSIG1 produced through the use of two in-frame alternative start sites. Bioinformatic analysis indicated that the presence of two in-frame start sites within the 5-prime region of INSIG1 mRNA is highly conserved and that production of two isoforms of INSIG1is likely a conserved event. Functional differences between these two isoforms were explored. No difference in either the regulation of SREBP processing or HMGCR degradation between the INSIG1 isoforms was observed and the functional significance of the two isoforms is as yet unclear. The final part of this thesis focused on enhancing the cytotoxicity of statins by targeted inhibition of SREBP processing by oxysterols. Statins have significant potential as anti-cancer agents as they inhibit the activity of HMGCR leading to a deficiency in mevalonate which is essential for cell survival. The levels of HMGCR fluctuate widely due to cholesterol feedback of SREBP processing. The relationship between sterol feedback and statin mediated cell death was investigated in depth in HeLa cells. Down regulation of SREBP processing by sterols significantly enhanced the efficacy of statin mediated cell death. Investigation of sterol feedback in additional cancer cell lines showed that sterol feedback was absent in cell lines A- 498, DU-145, MCF-7 and MeWo but was present in cell lines HT-29, HepG2 and KYSE-70. In the latter inhibition of SREBP processing using oxysterols significantly enhanced statin cytotoxicity. The results indicate that this approach is valid to enhance statin cytotoxicity in cancer cells, but may be limited by deregulation of SREBP processing and off target effects of statins, which were observed for some of the cancer cell lines screened.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The oxidised low density lipoprotein (LDL) hypothesis of atherosclerosis proposes that LDL undergoes oxidation in the interstitial fluid of the arterial wall. We have shown that aggregated (vortexed) nonoxidised LDL was taken up by J774 mouse macrophages and human monocyte-derived macrophages and oxidised intracellularly, as assessed by the microscopic detection of ceroid, an advanced lipid oxidation product. Confocal microscopy showed that the ceroid was located in the lysosomes. To confirm these findings, J774 macrophages were incubated with acetylated LDL, which is internalised rapidly to lysosomes, and then incubated (chase incubation) in the absence of any LDL. The intracellular levels of oxysterols, measured by HPLC, increased during the chase incubation period, showing that LDL must have been oxidised inside the cells. Furthermore, we found that this oxidative modification was inhibited by lipid-soluble antioxidants, an iron chelator taken up by fluid-phase pinocytosis and the lysosomotropic drug chloroquine, which increases the pH of lysosomes. The results indicate that LDL oxidation can occur intracellularly, most probably within lysosomes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

LDL oxidation may be important in atherosclerosis. Extensive oxidation of LDL by copper induces increased uptake by macrophages, but results in decomposition of hydroperoxides, making it more difficult to investigate the effects of hydroperoxides in oxidised LDL on cell function. We describe here a simple method of oxidising LDL by dialysis against copper ions at 4 degrees C, which inhibits the decomposition of hydroperoxides, and allows the production of LDL rich in hydroperoxides (626 +/- 98 nmol/mg LDL protein) but low in oxysterols (3 +/- 1 nmol 7-ketocholesterol/mg LDL protein), whilst allowing sufficient modification (2.6 +/- 0.5 relative electrophoretic mobility) for rapid uptake by macrophages (5.49 +/- 0.75 mu g I-125-labelled hydroperoxide-rich LDL vs. 0.46 +/- 0.04 mu g protein/mg cell protein in 18 h for native LDL). By dialysing under the same conditions, but at 37 degrees C, the hydroperoxides are decomposed extensively and the LDL becomes rich in oxysterols. This novel method of oxidising LDL with high yield to either a hydroperoxide- or oxysterol-rich form by simply altering the temperature of dialysis may provide a useful tool for determining the effects of these different oxidation products on cell function. (C) 2007 Elsevier Ireland Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The oxidized low density lipoprotein (LDL) hypothesis of atherosclerosis proposes that LDL undergoes oxidation in the interstitial fluid of the arterial wall. We have shown that aggregated (vortexed) nonoxidized LDL was taken up by J774 mouse macrophages and human monocyte-derived macrophages and oxidized intracellularly, as assessed by the microscopic detection of ceroid, an advanced lipid oxidation product. Confocal microscopy showed that the ceroid was located in the lysosomes. To confirm these findings, J774 macrophages were incubated with acetylated LDL, which is internalized rapidly to lysosomes, and then incubated (chase incubation) in the absence of any LDL. The intracellular levels of oxysterols, measured by HPLC, increased during the chase incubation period, showing that LDL must have been oxidized inside the cells. Furthermore, we found that this oxidative modification was inhibited by lipid-soluble antioxidants, an iron chelator taken up by fluid-phase pinocytosis and the lysosomotropic drug chloroquine, which increases the pH of lysosomes. The results indicate that LDL oxidation can occur intracellularly, most probably within lysosomes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Low density lipoprotein (LDL) has recently been shown to be oxidised by iron within the lysosomes of macrophages and this is a novel potential mechanism for LDL oxidation in atherosclerosis. Our aim was to characterise the chemical and physical changes induced in LDL by iron at lysosomal pH and to investigate the effects of iron chelators and α-tocopherol on this process. LDL was oxidised by iron at pH 4.5 and 37°C and its oxidation monitored by spectrophotometry and HPLC. LDL was oxidised effectively by FeSO4 (5-50 µM) and became highly aggregated at pH 4.5, but not at pH 7.4. Cholesteryl esters decreased and after a pronounced lag 7-ketocholesterol increased greatly. Total hydroperoxides (measured by tri-iodide assay) increased up to 24 h and then decreased only slowly. The lipid composition after 12 h at pH 4.5 and 37°C was similar to that of LDL oxidised by copper at pH 7.4 and 4°C, i.e. rich in hydroperoxides but low in oxysterols. Previously oxidised LDL aggregated rapidly and spontaneously at pH 4.5, but not at pH 7.4. Ferrous was much more effective than ferric iron at oxidising LDL when added after the oxidation was already underway. The iron chelators diethylenetriaminepentaacetic acid and, to a lesser extent, desferrioxamine inhibited LDL oxidation when added during its initial stages, but were unable to prevent LDL aggregating after it had been partially oxidised. Surprisingly, desferrioxamine increased the rate of LDL modification when added late in the oxidation process. α-Tocopherol enrichment of LDL initially increased the oxidation of LDL, but inhibited it later. The presence of oxidised and highly aggregated lipid within lysosomes has the potential to perturb the function of these organelles and to promote atherosclerosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cholesterol oxidation gives rise to a mixture of oxidized products. Different types of products are generated according to the reactive species being involved. Recently, attention has been focused on two cholesterol aldehydes, 3 beta-hydroxy-5 beta-hydroxy-B-norcholestane-6 beta-carboxyaldehyde (1a) and 3 beta-hydroxy-5-oxo-5,6-secocholestan-6-al (1b). These aldehydes can be generated by ozone-, as well as by singlet molecular oxygen-mediated cholesterol oxidation. It has been suggested that 1b is preferentially formed by ozone and la is preferentially formed by singlet molecular oxygen. In this study we describe the use of 1-pyrenebutyric hydrazine (PBH) as a fluorescent probe for the detection of cholesterol aldehydes. The formation of the fluorescent adduct between la with PBH was confirmed by HPLC-MS/MS. The fluorescence spectra of PBH did not change upon binding to the aldehyde. Moreover, the derivatization was also effective in the absence of an acidified medium, which is critical to avoid the formation of cholesterol aldehydes through Hock cleavage of 5 alpha-hydroperoxycholesterol. In conclusion, PBH can be used as an efficient fluorescent probe for the detection/quantification of cholesterol aldehydes in biological samples. Its analysis by HPLC coupled to a fluorescent detector provides a sensitive and specific way to quantify cholesterol aldehydes in the low femtomol range.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using differential display polymerase chain reaction, a gene was identified in CD34+-enriched populations that had with low or absent expression in CD34- populations. The full coding sequence of this transcript was obtained, and the predicted protein has a high degree of homology to oxysterol-binding protein. This gene has been designated OSBP-related protein 3 (ORP-3). Expression of ORP-3 was found to be 3- to 4-fold higher in CD34+ cells than in CD34- cells. Additionally, expression of this gene was 2-fold higher in the more primitive subfraction of hematopoietic cells defined by the CD34+38- phenotype and was down-regulated with the proliferation and differentiation of CD34+ cells. The ORP-3 predicted protein contains an oxysterol-binding domain. Well-characterized proteins expressing this domain bind oxysterols in a dose-dependent fashion. Biologic activities of oxysterols include inhibition of cholesterol biosynthesis and cell proliferation in a variety of cell types, among them hematopoietic cells. Characterization and differential expression of ORP-3 implicates a possible role in the mediation of oxysterol effects on hematopoiesis.