1000 resultados para Numeric control
Resumo:
As operações de maquinagem de componentes tendo em vista os mais diversos sectores de actividade têm registado um crescimento sustentável em Portugal, devido a inúmeros factores como a modernização do nosso parque de equipamentos, a competitividade da nossa mão-de-obra e a qualidade patenteada pelos serviços prestados pelas nossas empresas, cada vez mais conscientes da importância que os clientes internacionais assumem na sua actividade, da necessidade de cumprimento dos compromissos estabelecidos em termos de prazo de entrega e da procura incessante de novos mercados e sectores de actividade que potenciem um valor-acrescentado mais atractivo do produto. As solicitações do mercado no sector de actividade de prestação de serviços de maquinagem são imensas, e sempre extremamente condicionadas em termos de tempo de resposta. Por outro lado, os prestadores deste tipo de serviço ficam limitados por duas situações-limite: uma orçamentação por defeito poderá conduzir a prejuízos indesejáveis, ou mesmo incomportáveis, enquanto um preço excessivamente elevado poderá afastar o possível cliente e impedir a conquista de um novo projecto. Orçamentar depressa e bem é uma operação complexa, que requer uma análise muito cuidada dos desenhos fornecidos pelo possível cliente, delinear a sequência operatória, salvaguardar as tolerâncias e tipos de acabamento pretendidos, minimizar as operações de fixação e seleccionar as melhores ferramentas para efectuar o trabalho pretendido. Este trabalho, desenvolvido para a TECNOLANEMA, empresa do Grupo LANEMA, que é especialista na produção de peças em plástico técnico e em ligas de alumínio para os mais diversos sectores de actividade, tanto em Portugal como no Estrangeiro. O trabalho desenvolvido visou criar uma aplicação informática que permitisse elaborar orçamentos de forma rápida e precisa, através de determinados factores-chave previamente estudados. O projecto foi concluído e testado com sucesso na empresa.
Resumo:
Dissertação de mestrado em Engenharia Mecatrónica
Resumo:
Pós-graduação em Odontologia Restauradora - ICT
Resumo:
This study uses event-related brain potentials (ERPs) to investigate the electrophysiological correlates of numeric conflict monitoring in math-anxious individuals, by analyzing whether math anxiety is related to abnormal processing in early conflict detection (as shown by the N450 component) and/or in a later, response-related stage of processing (as shown by the conflict sustained potential; Conflict-SP). Conflict adaptation effects were also studied by analyzing the effect of the previous trial"s congruence in current interference. To this end, 17 low math-anxious (LMA)and 17 high math-anxious (HMA) individuals were presented with a numerical Stroop task. Groups were extreme in math anxiety but did not differ in trait or state anxiety or in simple math ability. The interference effect of the current trial (incongruent-congruent) and the interference effect preceded by congruence and by incongruity were analyzed both for behavioral measures and for ERPs. A greater interference effect was found for response times in the HMA group than in the LMA one. Regarding ERPs, the LMA group showed a greater N450 component for the interference effect preceded by congruence than when preceded by incongruity, while the HMA group showed greater Conflict-SP amplitude for the interference effect preceded by congruence than when preceded by incongruity. Our study showed that the electrophysiological correlates of numeric interference in HMA individuals comprise the absence of a conflict adaptation effect in the first stage of conflict processing (N450) and an abnormal subsequent up-regulation of cognitive control in order to overcome the conflict (Conflict-SP). More concretely, our study shows that math anxiety is related to a reactive and compensatory recruitment of control resources that is implemented only when previously exposed to a stimuli presenting conflicting information
Resumo:
The dispersion of pollutants in the environment is an issue of great interest as it directly affects air quality, mainly in large cities. Experimental and numerical tools have been used to predict the behavior of pollutant species dispersion in the atmosphere. A software has been developed based on the control-volume based on the finite element method in order to obtain two-dimensional simulations of Navier-Stokes equations and heat or mass transportation in regions with obstacles, varying position of the pollutant source. Numeric results of some applications were obtained and, whenever possible, compared with literature results showing satisfactory accordance. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
In this paper the continuous Verhulst dynamic model is used to synthesize a new distributed power control algorithm (DPCA) for use in direct sequence code division multiple access (DS-CDMA) systems. The Verhulst model was initially designed to describe the population growth of biological species under food and physical space restrictions. The discretization of the corresponding differential equation is accomplished via the Euler numeric integration (ENI) method. Analytical convergence conditions for the proposed DPCA are also established. Several properties of the proposed recursive algorithm, such as Euclidean distance from optimum vector after convergence, convergence speed, normalized mean squared error (NSE), average power consumption per user, performance under dynamics channels, and implementation complexity aspects, are analyzed through simulations. The simulation results are compared with two other DPCAs: the classic algorithm derived by Foschini and Miljanic and the sigmoidal of Uykan and Koivo. Under estimated errors conditions, the proposed DPCA exhibits smaller discrepancy from the optimum power vector solution and better convergence (under fixed and adaptive convergence factor) than the classic and sigmoidal DPCAs. (C) 2010 Elsevier GmbH. All rights reserved.
Resumo:
Exposure to solar ultraviolet (UV) light is the main causative factor for skin cancer. UV exposure depends on environmental and individual factors. Individual exposure data remain scarce and development of alternative assessment methods is greatly needed. We developed a model simulating human exposure to solar UV. The model predicts the dose and distribution of UV exposure received on the basis of ground irradiation and morphological data. Standard 3D computer graphics techniques were adapted to develop a rendering engine that estimates the solar exposure of a virtual manikin depicted as a triangle mesh surface. The amount of solar energy received by each triangle was calculated, taking into account reflected, direct and diffuse radiation, and shading from other body parts. Dosimetric measurements (n = 54) were conducted in field conditions using a foam manikin as surrogate for an exposed individual. Dosimetric results were compared to the model predictions. The model predicted exposure to solar UV adequately. The symmetric mean absolute percentage error was 13%. Half of the predictions were within 17% range of the measurements. This model provides a tool to assess outdoor occupational and recreational UV exposures, without necessitating time-consuming individual dosimetry, with numerous potential uses in skin cancer prevention and research.
Resumo:
The proposal presented in this thesis is to provide designers of knowledge based supervisory systems of dynamic systems with a framework to facilitate their tasks avoiding interface problems among tools, data flow and management. The approach is thought to be useful to both control and process engineers in assisting their tasks. The use of AI technologies to diagnose and perform control loops and, of course, assist process supervisory tasks such as fault detection and diagnose, are in the scope of this work. Special effort has been put in integration of tools for assisting expert supervisory systems design. With this aim the experience of Computer Aided Control Systems Design (CACSD) frameworks have been analysed and used to design a Computer Aided Supervisory Systems (CASSD) framework. In this sense, some basic facilities are required to be available in this proposed framework: ·
H-infinity control design for time-delay linear systems: a rational transfer function based approach
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This work focuses on applying fuzzy control embedded in microcontrollers in an experimental apparatus using magnetorheological fluid damper. The non-linear behavior of the magnetorheological dampers associated with the parametric variations on vehicle suspension models corroborate the use of the fuzzy controllers. The fundamental formulation of this controller is discussed and its performance is shown through numeric simulations. An experimental apparatus representing a two degree of freedom system containing a magnetorheological damper is used to identify the main parameters and to evaluate the performance of the closed-loop system with the embedded low-cost microcontroller-based fuzzy controller. © 2013 Brazilian Society for Automatics - SBA.
Resumo:
Historically, the ichthyofauna of large Brazilian rivers has been subject to anthropogenic interference, such as impoundments. Currently, cage fish farming systems are a new source of impact on aquatic ecosystems. The objective of this study was to characterise the impact of freshwater fish farms on the feeding of five species of Neotropical freshwater fish. Specimens of Astyanax altiparanae, Galeocharax knerii, Iheringicthys labrosus, Pimelodus maculatus and Plagioscion squamosissimus were sampled in areas around two systems of cage fish farming (CF), and two control areas (CT) that were not influenced by this activity. Results show that there were significant changes in the diet of trophic generalist species (A. altiparanae, P. maculatus and I. labrosus) accompanied by a related increase in the condition factor values of these species in cage areas. Trophic specialist species, such as the carnivorous fish species G. knerii and P. squamosissimus, presented small differences between the CF and CT areas with regard to diet and showed no differences in other analyses performed. In conclusion, cage fish farms can affect the natural diet of trophic generalist fish species, directly affecting the nutritional status (condition factor), where food wastes was found to be one of the principal items consumed by this trophic guild. Results indicate that these species are responsible for recycling a great quantity of organic matter transferred by this type of activity, which, along with local fishery activities, contribute to mitigation of associated processes of eutrophication. © 2013 Elsevier B.V.
Resumo:
"Enforcement actions prepared by the EPA and filed with the Pollution Control Board."
H-infinity control design for time-delay linear systems: a rational transfer function based approach
Resumo:
The aim of this paper is to present new results on H-infinity control synthesis for time-delay linear systems. We extend the use of a finite order LTI system, called comparison system to H-infinity analysis and design. Differently from what can be viewed as a common feature of other control design methods available in the literature to date, the one presented here treats time-delay systems control design with classical numeric routines based on Riccati equations arisen from H-infinity theory. The proposed algorithm is simple, efficient and easy to implement. Some examples illustrating state and output feedback design are solved and discussed in order to put in evidence the most relevant characteristic of the theoretical results. Moreover, a practical application involving a 3-DOF networked control system is presented.
Resumo:
Pesticides applications have been described by many researches as a very inefficient process. In some cases, there are reports that only 0.02% of the applied products are used for the effective control of the problem. The main factor that influences pesticides applications is the droplet size formed on spraying nozzles. Many parameters affects the dynamic of the droplets, like wind, temperature, relative humidity, and others. Small droplets are biologically more active, but they are affected by evaporation and drift. On the other hand, the great droplets do not promote a good distribution of the product on the target. In this sense, associated with the risk of non target areas contamination and with the high costs involved in applications, the knowledge of the droplet size is of fundamental importance in the application technology. When sophisticated technology for droplets analysis is unavailable, is common the use of artificial targets like water-sensitive paper to sample droplets. On field sampling, water-sensitive papers are placed on the trials where product will be applied. When droplets impinging on it, the yellow surface of this paper will be stained dark blue, making easy their recognition. Collected droplets on this papers have different kinds of sizes. In this sense, the determination of the droplet size distribution gives a mass distribution of the material and so, the efficience of the application of the product. The stains produced by droplets shows a spread factor proportional to their respectives initial sizes. One of methodologies to analyse the droplets is a counting and measure of the droplets made in microscope. The Porton N-G12 graticule, that shows equaly spaces class intervals on geometric progression of square 2, are coulpled to the lens of the microscope. The droplet size parameters frequently used are the Volumetric Median Diameter (VMD) and the Numeric Median Diameter. On VMD value, a representative droplets sample is divided in two equal parts of volume, in such away one part contains droplets of sizes smaller than VMD and the other part contains droplets of sizes greater that VMD. The same process is done to obtaining the NMD, which divide the sample in two equal parts in relation to the droplets size. The ratio between VMD and NMD allows the droplets uniformity evaluation. After that, the graphics of accumulated probability of the volume and size droplets are plotted on log scale paper (accumulated probability versus median diameter of each size class). The graphics provides the NMD on the x-axes point corresponding to the value of 50% founded on the y-axes. All this process is very slow and subjected to operator error. So, in order to decrease the difficulty envolved with droplets measuring it was developed a numeric model, implemented on easy and accessfull computational language, which allows approximate VMD and NMD values, with good precision. The inputs to this model are the frequences of the droplets sizes colected on the water-sensitive paper, observed on the Porton N-G12 graticule fitted on microscope. With these data, the accumulated distribution of the droplet medium volumes and sizes are evaluated. The graphics obtained by plotting this distributions allow to obtain the VMD and NMD using linear interpolation, seen that on the middle of the distributions the shape of the curves are linear. These values are essential to evaluate the uniformity of droplets and to estimate the volume deposited on the observed paper by the density (droplets/cm2). This methodology to estimate the droplets volume was developed by 11.0.94.224 Project of the CNPMA/EMBRAPA. Observed data of herbicides aerial spraying samples, realized by Project on Pelotas/RS county, were used to compare values obtained manual graphic method and with those obtained by model has shown, with great precision, the values of VMD and NMD on each sampled collector, allowing to estimate a quantities of deposited product and, by consequence, the quantities losses by drifty. The graphics of variability of VMD and NMD showed that the quantity of droplets that reachs the collectors had a short dispersion, while the deposited volume shows a great interval of variation, probably because the strong action of air turbulence on the droplets distribution, enfasizing the necessity of a deeper study to verify this influences on drift.
Resumo:
The control of energy homeostasis relies on robust neuronal circuits that regulate food intake and energy expenditure. Although the physiology of these circuits is well understood, the molecular and cellular response of this program to chronic diseases is still largely unclear. Hypothalamic inflammation has emerged as a major driver of energy homeostasis dysfunction in both obesity and anorexia. Importantly, this inflammation disrupts the action of metabolic signals promoting anabolism or supporting catabolism. In this review, we address the evidence that favors hypothalamic inflammation as a factor that resets energy homeostasis in pathological states.