939 resultados para Nonlinear Effects


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nonlinear effects associated with density modulation caused by wave-induced ionization in magnetized plasmas were studied. The ionizing surface waves propagate at the interface between the plasma and a metallic surface. It is shown that the ionization nonlinearity can be important for typical experimental conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The flow due to a finite disk rotating in an incompressible viscous fluid has been studied. A modified Newton-gradient finite difference scheme is used to obtain the solution of full Navier-Stokes equations numerically for different disk and cylinder sizes for a wide range of Reynolds numbers. The introduction of the aspect ratio and the disk-shroud gap, significantly alters the flow characteristics in the region under consideration, The frictional torque calculated from the flow data reveals that the contribution due to nonlinear terms is not negligible even at a low Reynolds number. For large Reynolds numbers, the flow structure reveals a strong boundary layer character.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

When studying physical systems, it is common to make approximations: the contact interaction is linear, the crystal is periodic, the variations occurs slowly, the mass of a particle is constant with velocity, or the position of a particle is exactly known are just a few examples. These approximations help us simplify complex systems to make them more comprehensible while still demonstrating interesting physics. But what happens when these assumptions break down? This question becomes particularly interesting in the materials science community in designing new materials structures with exotic properties In this thesis, we study the mechanical response and dynamics in granular crystals, in which the approximation of linearity and infinite size break down. The system is inherently finite, and contact interaction can be tuned to access different nonlinear regimes. When the assumptions of linearity and perfect periodicity are no longer valid, a host of interesting physical phenomena presents itself. The advantage of using a granular crystal is in its experimental feasibility and its similarity to many other materials systems. This allows us to both leverage past experience in the condensed matter physics and materials science communities while also presenting results with implications beyond the narrower granular physics community. In addition, we bring tools from the nonlinear systems community to study the dynamics in finite lattices, where there are inherently more degrees of freedom. This approach leads to the major contributions of this thesis in broken periodic systems. We demonstrate the first defect mode whose spatial profile can be tuned from highly localized to completely delocalized by simply tuning an external parameter. Using the sensitive dynamics near bifurcation points, we present a completely new approach to modifying the incremental stiffness of a lattice to arbitrary values. We show how using nonlinear defect modes, the incremental stiffness can be tuned to anywhere in the force-displacement relation. Other contributions include demonstrating nonlinear breakdown of mechanical filters as a result of finite size, and the presents of frequency attenuation bands in essentially nonlinear materials. We finish by presenting two new energy harvesting systems based on our experience with instabilities in weakly nonlinear systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The 90° problem of cosmic-ray transport theory is revisited in this paper. By using standard forms of the wave spectrum in the solar wind, the pitch-angle Fokker–Planck coefficient and the parallel mean free path are computed for different resonance functions. A critical comparison is made of the strength of 90° scattering due to plasmawave effects, dynamical turbulence effects and nonlinear effects. It is demonstrated that, only for low-energy cosmic particles, dynamical effects are usually dominant. The novel results presented here are essential for an effective comparison of heliospheric observations for the parallel mean free path with the theoretical model results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The nonlinear propagation of finite amplitude ion acoustic solitary waves in a plasma consisting of adiabatic warm ions, nonisothermal electrons, and a weakly relativistic electron beam is studied via a two-fluid model. A multiple scales technique is employed to investigate the nonlinear regime. The existence of the electron beam gives rise to four linear ion acoustic modes, which propagate at different phase speeds. The numerical analysis shows that the propagation speed of two of these modes may become complex-valued (i.e., waves cannot occur) under conditions which depend on values of the beam-to-background-electron density ratio , the ion-to-free-electron temperature ratio , and the electron beam velocity v0; the remaining two modes remain real in all cases. The basic set of fluid equations are reduced to a Schamel-type equation and a linear inhomogeneous equation for the first and second-order potential perturbations, respectively. Stationary solutions of the coupled equations are derived using a renormalization method. Higher-order nonlinearity is thus shown to modify the solitary wave amplitude and may also deform its shape, even possibly transforming a simple pulse into a W-type curve for one of the modes. The dependence of the excitation amplitude and of the higher-order nonlinearity potential correction on the parameters , , and v0 is numerically investigated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the amplitude modulation of transverse dust lattice waves (TDLW) propagating in a single- and double-layer dusty plasma (DP) crystal. It is shown that a modulational instability mechanism, which is related to an intrinsic nonlinearity of the sheath electric field, may occur under certain conditions. Possibility of the formation of localized excitations (envelope solitons) in the dusty plasma crystal is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The conventional wisdom regarding party system fragmentation assumes that the effects of electoral systems and social cleavages are linear. However, recent work applying organizational ecology theories to the study of party systems has challenged the degree to which electoral system effects are linear. This paper applies such concepts to the study of social cleavages. Drawing from theories of organizational ecology and the experience of many ethnically diverse African party systems, I argue that the effects of ethnic diversity are nonlinear, with party system fragmentation increasing until reaching moderate levels of diversity before declining as diversity reaches extreme values. Examining this argument cross-nationally, the results show that accounting for nonlinearity in ethnic diversity effects significantly improves model fit.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nonlinear effects on the early stage of phase ordering are studied using Adomian's decomposition method for the Ginzburg-Landau equation for a nonconserved order parameter. While the long-time regime and the linear behavior at short times of the theory are well understood, the onset of nonlinearities at short times and the breaking of the linear theory at different length scales are less understood. In the Adomians decomposition method, the solution is systematically calculated in the form of a polynomial expansion for the order parameter, with a time dependence given as a series expansion. The method is very accurate for short times, which allows to incorporate the short-time dynamics of the nonlinear terms in a analytical and controllable way. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we report our achievements in the elaboration and optical characterizations of low-losses suspended core optical fibers elaborated from As2S3 glass. For preforms elaboration, alternatively to other processes like the stack and draw or extrusion, we use a process based on mechanical drilling. The drawing of these drilled performs into fibers allows reaching a suspended core geometry, in which a 2 μm diameter core is linked to the fiber clad region by three supporting struts. The different fibers that have been drawn show losses close to 0.9 dB/m at 1.55 μm. The suspended core waveguide geometry has also an efficient influence on the chromatic dispersion and allows its management. Indeed, the zero dispersion wavelength, which is around 5 μm in the bulk glass, is calculated to be shifted towards around 2μm in our suspended core fibers. In order to qualify their nonlinearity we have pumped them at 1.995 μm with the help of a fibered ns source. We have observed a strong non linear response with evidence of spontaneous Raman scattering and strong spectral broadening. © 2011 SPIE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a detailed study of the Baryscan technique, a new efficient alternative to the widespread Z-scan technique which has been demonstrated [Opt. Lett. 36:8, 2011] to reach among the highest sensitivity levels. This method is based upon the measurement of optical nonlinearities by means of beam centroid displacements with a position sensitive detector and is able to deal with any kind of lensing effect. This technique is applied here to measure pump-induced electronic refractive index changes (population lens), which can be discriminated from parasitic thermal effects by using a time-resolved Baryscan experiment. This method is validated by evaluating the polarizability variation at the origin of the population lens observed in the reference Cr3+:GSGG laser material.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nonlinear effects in optical fibers

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[1] The profiles for the water table height h(x, t) in a shallow sloping aquifer are reexamined with a solution of the nonlinear Boussinesq equation. We demonstrate that the previous anomaly first reported by Brutsaert [1994] that the point at which the water table h first becomes zero at x = L at time t = t(c) remains fixed at this point for all times t > t(c) is actually a result of the linearization of the Boussinesq equation and not, as previously suggested [Brutsaert, 1994; Verhoest and Troch, 2000], a result of the Dupuit assumption. Rather, by examination of the nonlinear Boussinesq equation the drying front, i.e., the point x(f) at which h is zero for times t greater than or equal to t(c), actually recedes downslope as physically expected. This points out that the linear Boussinesq equation should be used carefully when a zero depth is obtained as the concept of an average'' depth loses meaning at that time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This dissertation presents detailed experimental and theoretical investigations of nonlinear and nonreciprocal effects in magnetic garnet films. The dissertation thus comprises two major sections. The first section concentrates on the study of a new class of nonlinear magneto-optic thin film materials possessing strong higher order magnetic susceptibility for nonlinear optical applications. The focus was on enlarging the nonlinear performance of ferrite garnet films by strain generation and compositional gradients in the sputter-deposition growth of these films. Under this project several bismuth-substituted yttrium iron garnet (Bi,Y) 3 (Fe,Ga)5 O12(acronym as Bi:YIG) films have been sputter-deposited over gadolinium gallium garnet (Gd 3 Ga5 O12 ) substrates and characterized for their nonlinear optical response. One of the important findings of this work is that lattice mismatch strain drives the second harmonic (SH) signal in the Bi:YIG films, in agreement with theoretical predictions; whereas micro-strain was found not to correlate significantly with SH signal at the micro-strain levels present in these films. This study also elaborates on the role of the film's constitutive elements and their concentration gradients in nonlinear response of the films. Ultrahigh sensitivity delivered by second harmonic generation provides a new exciting tool for studying magnetized surfaces and buried interfaces, making this work important from both a fundamental and application point of view. The second part of the dissertation addresses an important technological need; namely the development of an on-chip optical isolator for use in photonic integrated circuits. It is based on two related novel effects, nonreciprocal and unidirectional optical Bloch oscillations (BOs), recently proposed and developed by Professor Miguel Levy and myself. This dissertation work has established a comprehensive theoretical background for the implementation of these effects in magneto-optic waveguide arrays. The model systems we developed consist of photonic lattices in the form of one-dimensional waveguide arrays where an optical force is introduced into the array through geometrical design turning the beam sideways. Laterally displaced photons are periodically returned to a central guide by photonic crystal action. The effect leads to a novel oscillatory optical phenomenon that can be magnetically controlled and rendered unidirectional. An on-chip optical isolator was designed based on the unidirectionality of the magneto-opticBloch oscillatory motion. The proposed device delivers an isolation ratio as high as 36 dB that remains above 30 dB in a 0.7 nm wavelength bandwidth, at the telecommunication wavelength 1.55 μm. Slight modifications in isolator design allow one to achieve an even more impressive isolation ratio ~ 55 dB, but at the expense of smaller bandwidth. Moreover, the device allows multifunctionality, such as optical switching with a simultaneous isolation function, well suited for photonic integrated circuits.