Nonlinear effects on rotating disk flow in a cylindrical casing


Autoria(s): Khalili, A; Adabala, RR; Rath, HJ
Data(s)

1994

Resumo

The flow due to a finite disk rotating in an incompressible viscous fluid has been studied. A modified Newton-gradient finite difference scheme is used to obtain the solution of full Navier-Stokes equations numerically for different disk and cylinder sizes for a wide range of Reynolds numbers. The introduction of the aspect ratio and the disk-shroud gap, significantly alters the flow characteristics in the region under consideration, The frictional torque calculated from the flow data reveals that the contribution due to nonlinear terms is not negligible even at a low Reynolds number. For large Reynolds numbers, the flow structure reveals a strong boundary layer character.

Formato

application/pdf

Identificador

http://eprints.iisc.ernet.in/36655/1/Nonlinear_effects_2..pdf

Khalili, A and Adabala, RR and Rath, HJ (1994) Nonlinear effects on rotating disk flow in a cylindrical casing. In: Acta Mechanica, 107 (1-4). pp. 1-11.

Publicador

Springer

Relação

http://www.springerlink.com/content/w0t5j972r0322466/

http://eprints.iisc.ernet.in/36655/

Palavras-Chave #Mathematics
Tipo

Journal Article

PeerReviewed