947 resultados para Non-thermal Plasma
Resumo:
Numbers of diesel engines in both stationary and mobile applications are increasing nowadays. Diesel engines emit lower Hydrocarbon (HC) and Carbon monoxide (CO) than gasoline engines. However, they can produce more nitrogen oxides (NOx) and have higher particulate matter (PM). On the other hand, emissions standards are getting stringent day by day due to considerable concerns about unregulated pollutants and particularly ultrafine particles deleterious effect on human health. Non-thermal plasma (NTP) treatment of exhaust gas is known as a promising technology for both NOx and PM reduction by introducing plasma inside the exhaust gas. Vehicle exhaust gases undergo chemical changes when exposed to plasma. In this study, the PM removal mechanism using NTP by applying high voltage pulses of up to 20 kVpp with a repetition rate of 10 kHz are investigated. It is found that, voltage increase not necessarily has a positive effect on PM removal in diesel engine emissions.
Resumo:
Non-thermal plasma (NTP) is a promising candidate for controlling engine exhaust emissions. Plasma is known as the fourth state of matter, where both electrons and positive ions co-exist. Both gaseous and particle emissions of diesel exhaust undergo chemical changes when they are exposed to plasma. In this project diesel particulate matter (DPM) mitigation from the actual diesel exhaust by using NTP technology has been studied. The effect of plasma, not only on PM mass but also on PM size distribution, physico-chemical structure of PM and PM removal mechanisms, has been investigated. It was found that NTP technology can significantly reduce both PM mass and number. However, under some circumstances particles can be formed by nucleation. Energy required to create the plasma with the current technology is higher than the benchmark set by the commonly used by the automotive industry. Further research will enable the mechanism of particle creation and energy consumption to be optimised.
Resumo:
Non-thermal plasma (NTP) has been introduced over the past several years as a promising method for nitrogen oxide (NOx) removal. The intent, when using NTP, is to selectively transfer input electrical energy to the electrons, and to not expend this in heating the entire gas stream, which generates free radicals through collisions, and promotes the desired chemical changes in the exhaust gases. The generated active species react with the pollutant molecules and decompose them. This paper reviews and summarizes relevant literature regarding various aspects of the application of {NTP} technology on {NOx} removal from exhaust gases. A comprehensive description of available scientific literature on {NOx} removal using {NTP} technology is presented, including various types of NTP, e.g. dielectric barrier discharge, corona discharge and electron beam. Furthermore, the combination of {NTP} with catalyst and adsorbent for better {NOx} removal efficiency is presented in detail. The removal of {NOx} from both simulated gases and real diesel engines is also considered in this review paper. As {NTP} is a new technique and is not yet commercialized, there is a need for more studies to be performed in this field.
Resumo:
This study is seeking to investigate the effect of non-thermal plasma technology in the abatement of particulate matter (PM) from the actual diesel exhaust. Ozone (O3) strongly promotes PM oxidation, the main product of which is carbon dioxide (CO2). PM oxidation into the less harmful product (CO2) is the main objective whiles the correlation between PM, O3 and CO2 is considered. A dielectric barrier discharge reactor has been designed with pulsed power technology to produce plasma inside the diesel exhaust. To characterise the system under varied conditions, a range of applied voltages from 11 kVPP to 21kVPP at repetition rates of 2.5, 5, 7.5 and 10 kHz, have been experimentally investigated. The results show that by increasing the applied voltage and repetition rate, higher discharge power and CO2 dissociation can be achieved. The PM removal efficiency of more than 50% has been achieved during the experiments and high concentrations of ozone on the order of a few hundreds of ppm have been observed at high discharge powers. Furthermore, O3, CO2 and PM concentrations at different plasma states have been analysed for time dependence. Based on this analysis, an inverse relationship between ozone concentration and PM removal has been found and the role of ozone in PM removal in plasma treatment of diesel exhaust has been highlighted.
Resumo:
Non-thermal plasma (NTP) has been introduced over the last few years as a promising after- treatment system for nitrogen oxides and particulate matter removal from diesel exhaust. NTP technology has not been commercialised as yet, due to its high rate of energy consumption. Therefore, it is important to seek out new methods to improve NTP performance. Residence time is a crucial parameter in engine exhaust emissions treatment. In this paper, different electrode shapes are analysed and the corresponding residence time and NOx removal efficiency are studied. An axisymmetric laminar model is used for obtaining residence time distribution numerically using FLUENT software. If the mean residence time in a NTP plasma reactor increases, there will be a corresponding increase in the reaction time and consequently the pollutant removal efficiency increases. Three different screw thread electrodes and a rod electrode are examined. The results show the advantage of screw thread electrodes in comparison with the rod electrode. Furthermore, between the screw thread electrodes, the electrode with the thread width of 1 mm has the highest NOx removal due to higher residence time and a greater number of micro-discharges. The results show that the residence time of the screw thread electrode with a thread width of 1 mm is 21% more than for the rod electrode.
Resumo:
Application of non-thermal plasma for gas cleaning is gaining prominence in the recent years. Normally, the gas treatment was carried out at or above room temperature, by the dry type plasma reactor. However, this treatment is still inadequate in the removal of certain stable gases present in the flue gas mixture. We propose the non-thermal plasma process at very low temperature, and report here some interesting results of treatment of NO or N2O with pulsed plasma below — 100°C ambient temperature. Direct methanol synthesis from CH4 and CO2 at very low temperature is also reported. A comparative analysis of the various tests are presented together with a note on the energy consideration
Resumo:
A single-stage plasma-catalytic reactor in which catalytic materials were packed was used to remove nitrogen oxides. The packing material was scoria being made of various metal oxides including Al2O3, MgO, TiO2, etc. Scoria was able to act not only as dielectric pellets but also as a catalyst in the presence of reducing agent such as ethylene and ammonia. Without plasma discharge, scoria did not work well as a catalyst in the temperature range of 100 °C to 200 °C, showing less than 10% of NOx removal efficiency. When plasma is produced inside the reactor, the NOx removal efficiency could be increased to 60% in this temperature range.
Resumo:
Application of non-thermal plasma for gas cleaning is gaining prominence in the recent years. Normally, the gas treatment was carried out at or above room temperature, by the dry type plasma reactor. However, this treatment is still inadequate in the removal of certain stable gases present in the flue gas mixture. We propose the non-thermal plasma process at very low temperature, and report here some interesting results of treatment of NO or N2O with pulsed plasma below — 100°C ambient temperature. Direct methanol synthesis from CH4 and CO2 at very low temperature is also reported. A comparative analysis of the various tests are presented together with a note on the energy consideration
Resumo:
Bacteria exist, in most environments, as complex, organised communities of sessile cells embedded within a matrix of self-produced, hydrated extracellular polymeric substances known as biofilms. Bacterial biofilms represent a ubiquitous and predominant cause of both chronic infections and infections associated with the use of indwelling medical devices such as catheters and prostheses. Such infections typically exhibit significantly enhanced tolerance to antimicrobial, biocidal and immunological challenge. This renders them difficult, sometimes impossible, to treat using conventional chemotherapeutic agents. Effective alternative approaches for prevention and eradication of biofilm associated chronic and device-associated infections are therefore urgently required. Atmospheric pressure non-thermal plasmas are gaining increasing attention as a potential approach for the eradication and control of bacterial infection and contamination. To date, however, the majority of studies have been conducted with reference to planktonic bacteria and rather less attention has been directed towards bacteria in the biofilm mode of growth. In this study, the activity of a kilohertz-driven atmospheric pressure non-thermal plasma jet, operated in a helium oxygen mixture, against Pseudomonas aeruginosa in vitro biofilms was evaluated. Pseudomonas aeruginosa biofilms exhibit marked susceptibility to exposure of the plasma jet effluent, following even relatively short (~10's s) exposure times. Manipulation of plasma operating conditions, for example, plasma operating frequency, had a significant effect on the bacterial inactivation rate. Survival curves exhibit a rapid decline in the number of surviving cells in the first 60 seconds followed by slower rate of cell number reduction. Excellent anti-biofilm activity of the plasma jet was also demonstrated by both confocal scanning laser microscopy and metabolism of the tetrazolium salt, XTT, a measure of bactericidal activity.
Resumo:
Although the antimicrobial activity of atmospheric pressure non-thermal plasmas, including its capacity to eradicate microbial biofilms, has been gaining an ever increasing interest for different medical applications, its potential utilisation in the control of biofouling and biodeterioration has, to date, received no attention. In this study, the ability of atmospheric pressure plasma to eradicate biofilms of four biofouling bacterial species, frequently encountered in marine environments, was investigated. Biofilms were grown on both polystyrene and stainless steel surfaces before being exposed to the plasma source. Viability and biomass of biofilms were evaluated using colony count method and differential Live/Dead fluorescence staining followed by confocal laser scanning microscopy. Rapid and complete eradication of all biofilms under study was achieved after plasma exposures ranging from 60 to 120 s. Confocal microscopy examination showed that plasma treatment has mediated not only cell killing but also varying degrees of physical removal of biofilms. Further investigation and tailored development of atmospheric pressure non-thermal plasma sources for this particular application could provide an additional powerful and effective weapon in the current anti-biofouling armamentarium.
Resumo:
Atmospheric pressure non-thermal plasma (APNTP) has been gaining increasing interest as a new alternative antibacterial approach. Although this approach has demonstrated promising antibacterial activity, its exact mechanism of action remains unclear. Mechanistic elucidation of the antimicrobial activity will facilitate development and rational optimisation of this approach for potential medical applications. In this study, the antibacterial efficacy of an in-house-built APNTP jet was evaluated alongside an investigation of the interactions between APNTP and major cellular components in order to identify the potential cellular targets involved in plasma-mediated bacterial destruction mechanisms. The investigated plasma jet exhibited excellent, rapid antibacterial activity against a selected panel of clinically significant bacterial species including Bacillus cereus, meticillin-resistant Staphylococcus aureus (MRSA), Escherichia coli and Pseudomonas aeruginosa, all of which were completely inactivated within 2 min of plasma exposure. Plasma-mediated damaging effects were observed, to varying degrees, on all of the investigated cellular components including DNA, a model protein enzyme, and lipid membrane integrity and permeability. The antibacterial efficacy of APNTP appears to involve a multiple-target mechanism, which potentially reduces the likelihood of emergence of microbial resistance towards this promising antimicrobial approach. However, cellular membrane damage and resulting permeability perturbation was found to be the most likely rate-determining step in this mechanism. Crown Copyright © 2013.