889 resultados para Non-linear behaviour


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article presents a new material model developed with the aim of analyzing failure of blunt notched components made of nonlinear brittle materials. The model, which combines the cohesive crack model with Hencky's theory of total deformations, is used to simulate an experimental benchmark carried out previously by the authors. Such combination is achieved through the embedded crack approach concept. In spite of the unavailability of precise material data, the numerical predictions obtained show good agreement with the experimental results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a higher-order beam-column formulation that can capture the geometrically non-linear behaviour of steel framed structures which contain a multiplicity of slender members. Despite advances in computational frame software, analyses of large frames can still be problematic from a numerical standpoint and so the intent of the paper is to fulfil a need for versatile, reliable and efficient non-linear analysis of general steel framed structures with very many members. Following a comprehensive review of numerical frame analysis techniques, a fourth-order element is derived and implemented in an updated Lagrangian formulation, and it is able to predict flexural buckling, snap-through buckling and large displacement post-buckling behaviour of typical structures whose responses have been reported by independent researchers. The solutions are shown to be efficacious in terms of a balance of accuracy and computational expediency. The higher-order element forms a basis for augmenting the geometrically non-linear approach with material non-linearity through the refined plastic hinge methodology described in the companion paper.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the companion paper, a fourth-order element formulation in an updated Lagrangian formulation was presented to handle geometric non-linearities. The formulation of the present paper extends this to include material non-linearity by proposing a refined plastic hinge approach to analyse large steel framed structures with many members, for which contemporary algorithms based on the plastic zone approach can be problematic computationally. This concept is an advancement of conventional plastic hinge approaches, as the refined plastic hinge technique allows for gradual yielding, being recognized as distributed plasticity across the element section, a condition of full plasticity, as well as including strain hardening. It is founded on interaction yield surfaces specified analytically in terms of force resultants, and achieves accurate and rapid convergence for large frames for which geometric and material non-linearity are significant. The solutions are shown to be efficacious in terms of a balance of accuracy and computational expediency. In addition to the numerical efficiency, the present versatile approach is able to capture different kinds of material and geometric non-linearities on general applications of steel structures, and thereby it offers an efficacious and accurate means of assessing non-linear behaviour of the structures for engineering practice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A non-linear perturbation model for river flow forecasting is developed, based on consideration of catchment wetness using an antecedent precipitation index (API). Catchment seasonality, of the form accounted for in the linear perturbation model (the LPM), and non-linear behaviour both in the runoff generation mechanism and in the flow routing processes are represented by a constrained nan-linear model, the NLPM-API. A total of ten catchments, across a range of climatic conditions and catchment area magnitudes, located in China and in other countries, were selected for testing daily rainfall-runoff forecasting with this model. It was found that the NLPM-API model was significantly more efficient than the original linear perturbation model (the LPM). However, restric tion of explicit nan-linearity to the runoff generation process, in the simpler LPM-API form of the model, did not produce a significantly lower value of the efficiency in flood forecasting, in terms of the model efficiency index R-2. (C) 1997 Elsevier Science B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electrical transport and structural properties of platinum nanowires, deposited using the focussed ion beam method have been investigated. Energy dispersive X-ray spectroscopy reveals metal-rich grains (atomic composition 31% Pt and 50% Ga) in a largely non-metallic matrix of C, O and Si. Resistivity measurements (15-300 K) reveal a negative temperature coefficient with the room-temperature resistivity 80-300 times higher than that of bulk Pt. Temperature dependent current-voltage characteristics exhibit non-linear behaviour in the entire range investigated. The conductance spectra indicate increasing non-linearity with decreasing temperature, reaching 4% at 15 K. The observed electrical behaviour is explained in terms of a model for inter-grain tunnelling in disordered media, a mechanism that is consistent with the strongly disordered nature of the nanowires observed in the structure and composition analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Linear models of market performance may be misspecified if the market is subdivided into distinct regimes exhibiting different behaviour. Price movements in the US Real Estate Investment Trusts and UK Property Companies Markets are explored using a Threshold Autoregressive (TAR) model with regimes defined by the real rate of interest. In both US and UK markets, distinctive behaviour emerges, with the TAR model offering better predictive power than a more conventional linear autoregressive model. The research points to the possibility of developing trading rules to exploit the systematically different behaviour across regimes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

English: The assessment of safety in existing bridges and viaducts led the Ministry of Public Works of the Netherlands to finance a specific campaing aimed at the study of the response of the elements of these infrastructures. Therefore, this activity is focused on the investigation of the behaviour of reinforced concrete slabs under concentrated loads, adopting finite element modeling and comparison with experimental results. These elements are characterized by shear behaviour and crisi, whose modeling is, from a computational point of view, a hard challeng, due to the brittle behavior combined with three-dimensional effects. The numerical modeling of the failure is studied through Sequentially Linear Analysis (SLA), an alternative Finite Element method, with respect to traditional incremental and iterative approaches. The comparison between the two different numerical techniques represents one of the first works and comparisons in a three-dimensional environment. It's carried out adopting one of the experimental test executed on reinforced concrete slabs as well. The advantage of the SLA is to avoid the well known problems of convergence of typical non-linear analysis, by directly specifying a damage increment, in terms of reduction of stiffness and resistance in particular finite element, instead of load or displacement increasing on the whole structure . For the first time, particular attention has been paid to specific aspects of the slabs, like an accurate constraints modeling and sensitivity of the solution with respect to the mesh density. This detailed analysis with respect to the main parameters proofed a strong influence of the tensile fracture energy, mesh density and chosen model on the solution in terms of force-displacement diagram, distribution of the crack patterns and shear failure mode. The SLA showed a great potential, but it requires a further developments for what regards two aspects of modeling: load conditions (constant and proportional loads) and softening behaviour of brittle materials (like concrete) in the three-dimensional field, in order to widen its horizons in these new contexts of study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

En la presente tesis desarrollamos una estrategia para la simulación numérica del comportamiento mecánico de la aorta humana usando modelos de elementos finitos no lineales. Prestamos especial atención a tres aspectos claves relacionados con la biomecánica de los tejidos blandos. Primero, el análisis del comportamiento anisótropo característico de los tejidos blandos debido a las familias de fibras de colágeno. Segundo, el análisis del ablandamiento presentado por los vasos sanguíneos cuando estos soportan cargas fuera del rango de funcionamiento fisiológico. Y finalmente, la inclusión de las tensiones residuales en las simulaciones en concordancia con el experimento de apertura de ángulo. El análisis del daño se aborda mediante dos aproximaciones diferentes. En la primera aproximación se presenta una formulación de daño local con regularización. Esta formulación tiene dos ingredientes principales. Por una parte, usa los principios de la teoría de la fisura difusa para garantizar la objetividad de los resultados con diferentes mallas. Por otra parte, usa el modelo bidimensional de Hodge-Petruska para describir el comportamiento mesoscópico de los fibriles. Partiendo de este modelo mesoscópico, las propiedades macroscópicas de las fibras de colágeno son obtenidas a través de un proceso de homogenización. En la segunda aproximación se presenta un modelo de daño no-local enriquecido con el gradiente de la variable de daño. El modelo se construye a partir del enriquecimiento de la función de energía con un término que contiene el gradiente material de la variable de daño no-local. La inclusión de este término asegura una regularización implícita de la implementación por elementos finitos, dando lugar a resultados de las simulaciones que no dependen de la malla. La aplicabilidad de este último modelo a problemas de biomecánica se estudia por medio de una simulación de un procedimiento quirúrgico típico conocido como angioplastia de balón. In the present thesis we develop a framework for the numerical simulation of the mechanical behaviour of the human aorta using non-linear finite element models. Special attention is paid to three key aspects related to the biomechanics of soft tissues. First, the modelling of the characteristic anisotropic behaviour of the softue due to the collagen fibre families. Secondly, the modelling of damage-related softening that blood vessels exhibit when subjected to loads beyond their physiological range. And finally, the inclusion of the residual stresses in the simulations in accordance with the opening-angle experiment The modelling of damage is addressed with two major and different approaches. In the first approach a continuum local damage formulation with regularisation is presented. This formulation has two principal ingredients. On the one hand, it makes use of the principles of the smeared crack theory to avoid the mesh size dependence of the structural response in softening. On the other hand, it uses a Hodge-Petruska bidimensional model to describe the fibrils as staggered arrays of tropocollagen molecules, and from this mesoscopic model the macroscopic material properties of the collagen fibres are obtained using an homogenisation process. In the second approach a non-local gradient-enhanced damage formulation is introduced. The model is built around the enhancement of the free energy function by means of a term that contains the referential gradient of the non-local damage variable. The inclusion of this term ensures an implicit regularisation of the finite element implementation, yielding mesh-objective results of the simulations. The applicability of the later model to biomechanically-related problems is studied by means of the simulation of a typical surgical procedure, namely, the balloon angioplasty.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper investigates the non-linear bending behaviour of functionally graded plates that are bonded with piezoelectric actuator layers and subjected to transverse loads and a temperature gradient based on Reddy's higher-order shear deformation plate theory. The von Karman-type geometric non-linearity, piezoelectric and thermal effects are included in mathematical formulations. The temperature change is due to a steady-state heat conduction through the plate thickness. The material properties are assumed to be graded in the thickness direction according to a power-law distribution in terms of the volume fractions of the constituents. The plate is clamped at two opposite edges, while the remaining edges can be free, simply supported or clamped. Differential quadrature approximation in the X-axis is employed to convert the partial differential governing equations and the associated boundary conditions into a set of ordinary differential equations. By choosing the appropriate functions as the displacement and stress functions on each nodal line and then applying the Galerkin procedure, a system of non-linear algebraic equations is obtained, from which the non-linear bending response of the plate is determined through a Picard iteration scheme. Numerical results for zirconia/aluminium rectangular plates are given in dimensionless graphical form. The effects of the applied actuator voltage, the volume fraction exponent, the temperature gradient, as well as the characteristics of the boundary conditions are also studied in detail. Copyright (C) 2004 John Wiley Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Significant wheel-rail dynamic forces occur because of imperfections in the wheels and/or rail. One of the key responses to the transmission of these forces down through the track is impact force on the sleepers. Dynamic analysis of nonlinear systems is very complicated and does not lend itself easily to a classical solution of multiple equations. Trying to deduce the behaviour of track components from experimental data is very difficult because such data is hard to obtain and applies to only the particular conditions of the track being tested. The finite element method can be the best solution to this dilemma. This paper describes a finite element model using the software package ANSYS for various sized flat defects in the tread of a wheel rolling at a typical speed on heavy haul track. The paper explores the dynamic response of a prestressed concrete sleeper to these defects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A nonlinear interface element modelling method is formulated for the prediction of deformation and failure of high adhesive thin layer polymer mortared masonry exhibiting failure of units and mortar. Plastic flow vectors are explicitly integrated within the implicit finite element framework instead of relying on predictor–corrector like approaches. The method is calibrated using experimental data from uniaxial compression, shear triplet and flexural beam tests. The model is validated using a thin layer mortared masonry shear wall, whose experimental datasets are reported in the literature and is used to examine the behaviour of thin layer mortared masonry under biaxial loading.