912 resultados para Niche
Resumo:
Proteases with important roles for bacterial pathogens which specifically reside within intracellular vacuoles are frequently homologous to those which have important virulence functions for other bacteria. Research has identified that some of these conserved proteases have evolved specialised functions for intracellular vacuole residing bacteria. Unique proteases with pathogenic functions have also been described from Chlamydia, Mycobacteria, and Legionella. These findings suggest that there are further novel functions for proteases from these bacteria which remain to be described. This review summarises recent findings of novel protease functions from the intracellular human pathogenic bacteria which reside exclusively in vacuoles.
Resumo:
This paper will provide an overview of a joint research initiative by the Queensland University of Technology in conjunction with the Australian Smart Services Cooperative Research Centre into the development and analysis of online communities (OLCs). This project aimed to create an exciting and innovative web space (Staywild.com.au) around the concept of adventure travel. This paper considers the literature on promoting and building online communities. It also discusses methods for promotion and encouraging participation. These methods emerged from the literature and the results of a Staywild user survey. In our research for this paper we found little work that focused on promoting and building OLCs for non-profit organisations. This paper thus contributes to the field in its work towards developing a standardised method of marketing and promotion that can be applied to niche non-profit communities.
Resumo:
The International Baccalaureate’s branding and reputation targets academic high achievers aiming for university entrance. This is an empirical examination of the growing popularity of this transnational secondary credential amongst local populations in Australia, focusing on its uptake across the community, and the discourses underpinning its spread and popularity. This paper reports on online surveys of 179 parents and 231 students in schools offering the IB as an alternative to Australian state curricula. It sets out to understand the social ecology of who chooses the IB and who it chooses. Statistically significant differences between IB and non-IB choosers were found in terms of family income, parent education, student aspirations, transnational lifestyles, and neoconservative, neoliberal and cosmopolitan beliefs. The analysis demonstrates how the reproduction of advantage is accomplished through choice behaviours in stratified educational markets.
Resumo:
Within the communicative space online Social Network Sites (SNS) afford, Niche Social Networks Sites (NSNS) have emerged around particular geographic, demographic or topic-based communities to provide what broader SNS do not: specified and targeted content for an engaged and interested community. Drawing on a research project developed at the Queensland University of Technology in conjunction with the Australian Smart Services Cooperative Research Centre that produced an NSNS based around Adventure Travel, this paper outlines the main drivers for community creation and sustainability within NSNS. The paper asks what factors motivate users to join and stay with these sites and what, if any, common patterns can be noted in their formation. It also outlines the main barriers to online participation and content creation in NSNS, and the similarities and differences in SNS and NSNS business models. Having built a community of 100 registered members, the staywild.com.au project was a living laboratory, enabling us to document the steps taken in producing a NSNS and cultivating and retaining active contributors. The paper incorporates observational analysis of user-generated content (UGC) and user profile submissions, statistical analysis of site usage, and findings from a survey of our membership pool in noting areas of success and of failure. In drawing on our project in this way we provide a template for future iterations of NSNS initiation and development across various other social settings: not only niche communities, but also the media and advertising with which they engage and interact. Positioned within the context of online user participation and UGC research, our paper concludes with a discussion of the ways in which the tools afforded by NSNS extend earlier understandings of online ‘communities of interest’. It also outlines the relevance of our research to larger questions about the diversity of the social media ecology.
Resumo:
The cancer stem cell hypothesis states that tumours arise from cells with the ability to self-renew and differentiate into multiple cell types, and that these cells persist in tumors as a distinct population that can cause disease relapse and hence metastasis. The crux of this hypothesis is that these cells are the only cells capable of, by themselves, giving rise to new tumours. What proportion of a tumour consists of these stem cells, where are they localised, how are they regulated, and how can we identify them? The stromal cells embedded within the extracellular matrix (ECM) not only provide a scaffold but also produce ECM constituents for use by stem cells. Heparan sulfate proteoglycans (HSPGs) are ubiquitous to this cell niche and interact with a large number of ligands including growth factors, their receptors, and ECM structural components. It is still unclear whether ECM degradation and subsequent metastasis is a result of proteases produced by the tumour cells themselves or by cells within the stromal compartment. The identification of the cellular origin of cancer stem cells along with microenvironmental changes involved in the initiation, progression and the malignant conversion of all cancers is critical to the development of targeted therapeutics. As ubiquitous members of the ECM microenvironment and hence the cancer cell niche, HSPGs are candidates for a central role in these processes.
Resumo:
The chlamydiae are obligate intracellular parasites that have evolved specific interactions with their various hosts and host cell types to ensure their successful survival and consequential pathogenesis. The species Chlamydia pneumoniae is ubiquitous, with serological studies showing that most humans are infected at some stage in their lifetime. While most human infections are asymptomatic, C. pneumoniae can cause more-severe respiratory disease and pneumonia and has been linked to chronic diseases such as asthma, atherosclerosis, and even Alzheimer's disease. The widely dispersed animal-adapted C. pneumoniae strains cause an equally wide range of diseases in their hosts. It is emerging that the ability of C. pneumoniae to survive inside its target cells, including evasion of the host's immune attack mechanisms, is linked to the acquisition of key metabolites. Tryptophan and arginine are key checkpoint compounds in this host-parasite battle. Interestingly, the animal strains of C. pneumoniae have a slightly larger genome, enabling them to cope better with metabolite restrictions. It therefore appears that as the evolutionarily more ancient animal strains have evolved to infect humans, they have selectively become more "susceptible" to the levels of key metabolites, such as tryptophan. While this might initially appear to be a weakness, it allows these human C. pneumoniae strains to exquisitely sense host immune attack and respond by rapidly reverting to a persistent phase. During persistence, they reduce their metabolic levels, halting progression of their developmental cycle, waiting until the hostile external conditions have passed before they reemerge.
Resumo:
This study examined the role of heparan sulfate proteoglycans (HSPGs) in neural lineage differentiation of human mesenchymal stem cells (hMSCs). Several HSPGs were identified as potential new targets controlling neural fate specification and may be applied to the development of improved models to examine and repair brain damage. hMSCs were characterised throughout extended in vitro expansion for neural lineage potential (neurons, astrocytes, oligodendrocytes) and differentiated using terminal differentiation and intermediate sphere formation. Brain damage and neurological disorders caused by injury or disease affect a large number of people often resulting in lifelong disabilities. Multipotent mesenchymal stem cells have a large capacity for self-renewal and provide an excellent model to examine the regulation and contribution of both stem cells and their surrounding microenvironment to the repair of neural tissue damage.
Resumo:
This article analyses and compares Twitter activity for the niche sport of netball over the 2013 trans-Tasman ANZ Championship competition and the international Commonwealth Games event in 2014. Patterns within the Twitter data that were discovered through an analysis of the 2013 ANZ Championship season are considered in terms of the Commonwealth Games, and thus compared between a quasi-domestic and an international context. In particular, we highlight the extent to which niche sports such as netball attempt to capitalise on the opportunities provided by social media, and the challenges involved in coordinating event-specific hashtags, such as the #netball2014 hashtag promoted by the Commonwealth Games Federation.
Resumo:
Since we still know very little about stem cells in their natural environment, it is useful to explore their dynamics through modelling and simulation, as well as experimentally. Most models of stem cell systems are based on deterministic differential equations that ignore the natural heterogeneity of stem cell populations. This is not appropriate at the level of individual cells and niches, when randomness is more likely to affect dynamics. In this paper, we introduce a fast stochastic method for simulating a metapopulation of stem cell niche lineages, that is, many sub-populations that together form a heterogeneous metapopulation, over time. By selecting the common limiting timestep, our method ensures that the entire metapopulation is simulated synchronously. This is important, as it allows us to introduce interactions between separate niche lineages, which would otherwise be impossible. We expand our method to enable the coupling of many lineages into niche groups, where differentiated cells are pooled within each niche group. Using this method, we explore the dynamics of the haematopoietic system from a demand control system perspective. We find that coupling together niche lineages allows the organism to regulate blood cell numbers as closely as possible to the homeostatic optimum. Furthermore, coupled lineages respond better than uncoupled ones to random perturbations, here the loss of some myeloid cells. This could imply that it is advantageous for an organism to connect together its niche lineages into groups. Our results suggest that a potential fruitful empirical direction will be to understand how stem cell descendants communicate with the niche and how cancer may arise as a result of a failure of such communication.
Resumo:
Prostate cancer frequently metastasizes to bone, which becomes incurable; yet how cancer cells manage to migrate and grow inside the bone remains unknown. In this study I have discovered that both bone and fat cells within the bone marrow actively promote the survival and expansion of prostate cancer cells, and have subsequently developed approaches that can effectively inhibit these processes. Therefore, my work offers opportunities for the development of new prognostic and therapeutic approaches against metastatic prostate cancer and have the potential for improving the treatment outcome of the patients.
Resumo:
Global citizenship has emerged as a pressing curricular priority which all educational systems are currently grappling with. The challenge is to negotiate how this orientation might sit alongside the more traditional mission of mass school curriculum in building collective ballast for a national identity through a common morality and shared narratives, or may conflict with efforts to protect and promote indigenous and minority identities. As a case study of how these agendas interact, this chapter will consider curricular responses to global imperatives in the variegated conditions across the Australasian region (defined as Australia, New Zealand and Papua New Guinea). The chapter will outline recent developments in the social, economic and political contexts surrounding curricular reforms in these settings, and demonstrate how these developments have changed the conditions of possibility and strength of purpose behind efforts to internationalise school curricula. Three types of systemic responses are then described: firstly, an appetite for globally branded curricula such as the International Baccalaureate, Montessori, and Cambridge University Certificates to distinguish some in a stratified market; secondly, convergence in curriculum to improve national performance on international standardised tests; and thirdly, the infusion of cosmopolitan sensibilities, regional identities and intercultural competencies as a core curricular goal for all. The chapter considers the various pragmatic interpretations of ‘internationalisation’ in these responses, and argues that the third response seems both the most difficult to enact, and the most vulnerable to political interference.
Resumo:
Background: There has been growing interest in integrative taxonomy that uses data from multiple disciplines for species delimitation. Typically, in such studies, monophyly is taken as a proxy for taxonomic distinctiveness and these units are treated as potential species. However, monophyly could arise due to stochastic processes. Thus here, we have employed a recently developed tool based on coalescent approach to ascertain the taxonomic distinctiveness of various monophyletic units. Subsequently, the species status of these taxonomic units was further tested using corroborative evidence from morphology and ecology. This inter-disciplinary approach was implemented on endemic centipedes of the genus Digitipes (Attems 1930) from the Western Ghats (WG) biodiversity hotspot of India. The species of the genus Digitipes are morphologically conserved, despite their ancient late Cretaceous origin. Principal Findings: Our coalescent analysis based on mitochondrial dataset indicated the presence of nine putative species. The integrative approach, which includes nuclear, morphology, and climate datasets supported distinctiveness of eight putative species, of which three represent described species and five were new species. Among the five new species, three were morphologically cryptic species, emphasizing the effectiveness of this approach in discovering cryptic diversity in less explored areas of the tropics like the WG. In addition, species pairs showed variable divergence along the molecular, morphological and climate axes. Conclusions: A multidisciplinary approach illustrated here is successful in discovering cryptic diversity with an indication that the current estimates of invertebrate species richness for the WG might have been underestimated. Additionally, the importance of measuring multiple secondary properties of species while defining species boundaries was highlighted given variable divergence of each species pair across the disciplines.
Resumo:
Neutral and niche theories give contrasting explanations for the maintenance of tropical tree species diversity. Both have some empirical support, but methods to disentangle their effects have not yet been developed. We applied a statistical measure of spatial structure to data from 14 large tropical forest plots to test a prediction of niche theory that is incompatible with neutral theory: that species in heterogeneous environments should separate out in space according to their niche preferences. We chose plots across a range of topographic heterogeneity, and tested whether pairwise spatial associations among species were more variable in more heterogeneous sites. We found strong support for this prediction, based on a strong positive relationship between variance in the spatial structure of species pairs and topographic heterogeneity across sites. We interpret this pattern as evidence of pervasive niche differentiation, which increases in importance with increasing environmental heterogeneity.
Resumo:
Introduction: Our purpose was to assess how pairs of sibling horseshoe bats coexists when their morphology and echolocation are almost identical. We collected data on echolocation, wing morphology, diet, and habitat use of sympatric Rhinolophus mehelyi and R. euryale. We compared our results with literature data collected in allopatry with similar protocols and at the same time of the year (breeding season). Results:Echolocation frequencies recorded in sympatry for R. mehelyi (mean = 106.8 kHz) and R. euryale (105.1 kHz) were similar to those reported in allopatry (R. mehelyi 105–111 kHz; R. euryale 101–109 kHz). Wing parameters were larger in R. mehelyi than R. euryale for both sympatric and allopatric conditions. Moths constitute the bulk of the diet of both species in sympatry and allopatry, with minor variation in the amounts of other prey. There were no inter-specific differences in the use of foraging habitats in allopatry in terms of structural complexity, however we found inter-specific differences between sympatric populations: R. mehelyi foraged in less complex habitats. The subtle inter-specific differences in echolocation frequency seems to be unlikely to facilitate dietary niche partitioning; overall divergences observed in diet may be explained as a consequence of differential prey availability among foraging habitats. Inter-specific differences in the use of foraging habitats in sympatry seems to be the main dimension for niche partitioning between R. mehelyi and R. euryale, probably due to letter differences in wing morphology. Conclusions: Coexistence between sympatric sibling horseshoe bats is likely allowed by a displacement in spatial niche dimension, presumably due to the wing morphology of each species, and shifts the niche domains that minimise competition. Effective measures for conservation of sibling/similar horseshoe bats should guarantee structural diversity of foraging habitats.