979 resultados para Neuronal Sodium Channel


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Among the mu-conotoxins that block vertebrate voltage-gated sodium channels (VGSCs), some have been shown to be potent analgesics following systemic administration in mice. We have determined the solution structure of a new representative of this family, mu-BuIIIB, and established its disulfide connectivities by direct mass spectrometric collision induced dissociation fragmentation of the peptide with disulfides intact The major oxidative folding product adopts a 1-4/2-5/3-6 pattern with the following disulfide bridges: Cys5-Cys17, Cys6-Cys23, and Cys13-Cys24. The solution structure reveals that the unique N-terminal extension in mu-BuIIIB, which is also present in mu-BuIIIA and mu-BuIIIC but absent in other mu-conotoxins, forms part of a short a-helix encompassing Glu3 to Asn8. This helix is packed against the rest of the toxin and stabilized by the Cys5-Cys17 and Cys6-Cys23 disulfide bonds. As such, the side chain of Val1 is located close to the aromatic rings of Trp16 and His20, which are located on the canonical helix that displays several residues found to be essential for VGSC blockade in related mu-conotoxins. Mutations of residues 2 and 3 in the N-terminal extension enhanced the potency of mu-BuIIIB for Na(v)1.3. One analogue, D-Ala2]BuIIIB, showed a 40-fold increase, making it the most potent peptide blocker of this channel characterized to date and thus a useful new tool with which to characterize this channel. On the basis of previous results for related mu-conotoxins, the dramatic effects of mutations at the N-terminus were unanticipated and suggest that further gains in potency might be achieved by additional modifications of this region.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Voltage-gated sodium channels (VGSCs) play an important role in neuronal excitability. Regulation of VGSC activity is a complex phenomenon that occurs at multiple levels in the cell, including transcriptional regulation, post-translational modification and membrane insertion and retrieval. Multiple VGSC subtypes exist that vary in their biophysical and pharmacological properties and tissue distribution. Any alteration of the VGSC subtype profile of a neuron or the mechanisms that regulate VGSC activity can cause significant changes in neuronal excitability. Inflammatory and neuropathic pain states are characterised by alterations in VGSC subtype composition and activity in sensory neurons. This review focuses on the VGSC subtypes involved in such pain states. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The neuronal sodium channels are responsible for the rising phase of action potential and are composed of three subunits, of which the alpha-subunit has been shown to be adequate for most of its functional properties. We have stably expressed the rat brain type IIA sodium channel alpha-subunit in CHO cell tine using a CMV promoter-based vector. The expression was confirmed by detecting a 6.5 kb RNA corresponding to sodium channel alpha-subunit using Northern hybridization. The cells stably expressing the alpha-subunit, yield isolated sodium currents of amplitudes greater than 4nA when studied in whole-cell configuration of the patch-clamp technique. The sodium currents are characterized by activation and inactivation properties similar to neuronal sodium channels, and are blocked by the voltage gated sodium channel blocker tetrodotoxin (TTX).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Voltage-gated sodium channels perform critical roles for electrical signaling in the nervous system by generating action potentials in axons and in dendrites. At least 10 genes encode sodium channels in mammals, but specific physiological roles that distinguish each of these isoforms are not known. One possibility is that each isoform is expressed in a restricted set of cell types or is targeted to a specific domain of a neuron or muscle cell. Using affinity-purified isoform-specific antibodies, we find that Nav1.6 is highly concentrated at nodes of Ranvier of both sensory and motor axons in the peripheral nervous system and at nodes in the central nervous system. The specificity of this antibody was also demonstrated with the Nav1.6-deficient mouse mutant strain med, whose nodes were negative for Nav1.6 immunostaining. Both the intensity of labeling and the failure of other isoform-specific antibodies to label nodes suggest that Nav1.6 is the predominant channel type in this structure. In the central nervous system, Nav1.6 is localized in unmyelinated axons in the retina and cerebellum and is strongly expressed in dendrites of cortical pyramidal cells and cerebellar Purkinje cells. Ultrastructural studies indicate that labeling in dendrites is both intracellular and on dendritic shaft membranes. Remarkably, Nav1.6 labeling was observed at both presynaptic and postsynaptic membranes in the cortex and cerebellum. Thus, a single sodium channel isoform is targeted to different neuronal domains and can influence both axonal conduction and synaptic responses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Resistance against synthetic pyrethroid (SP) products for the control of cattle ticks in Australia was detected in the field in 1984, within a very short time of commercial introduction. We have identified a mutation in the domain II S4-5 linker of the para-sodium channel that is associated with resistance to SPs in the cattle tick Rhipicephalus (Boophilus) microplus from Australia. The cytosine to adenine mutation at position 190 in the R. microplus sequence AF134216, results in an amino acid substitution from leucine in the susceptible strain to isoleucine in the resistant strain. A similar mutation has been shown to confer SP resistance in the whitefly, Bemisia tabaci, but has not been described previously in ticks. A diagnostic quantitative PCR assay has been developed using allele-specific Taqman® minor groove-binding (MGB) probes. Using the assay to screen field and laboratory populations of ticks showed that homozygote allelic frequencies correlated highly with the survival percentage at the discriminating concentration of cypermethrin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1. The rat brain type IIA Na+ channel alpha-subunit was stably expressed in Chinese hamster ovary (CHO) cells. Current through the expressed Na+ channels was studied using the whole-cell configuration of the patch clamp technique. The transient Na+ current was sensitive to TTX and showed a bell-shaped peak current vs. membrane potential relation. 2. Na+ current inactivation was better described by the sum of two exponentials in the potential range -30 to +40 mV, with. a dominating fast component and a small slower component. 3. The steady-state inactivation, h(infinity), was related to potential by a Boltzmann distribution, underlying thr ee states of the inactivation gate. 4. Recovery of the channels from inactivation at different potentials in the range -70 to -120 mV were characterized by al? initial delay which decreased with hyperpolarization. The time course was well fitted by the sum of two exponentials. In this case the slower exponential was the major component, and both time constants decreased with hyperpolarization. 5. For a working description of the Na+ channel inactivation in this preparation, with a minimal deviation from the Hodgkin-Huxley model, a three-state scheme of the form O reversible arrow I-1 reversible arrow I-2 was proposed, replacing the original two-state scheme of the Hodgkin-Huxley model, and the rate constants are reported. 6. The instantaneous current-voltage relationship showed marked deviation from linearity and was satisfactorily fitted by the constant-field equation. 7. The time course of activation was described by an m(x) model. However, the best-fitted value of x varied with the membrane potential and had a mean value of 2. 8. Effective gating charge was determined to be 4.7e from the slope of the activation plot, plotted on a logarithmic scale. 9. The rate constants of activation, alpha(m) and beta(m), were determined. Their functional dependence on the membrane potential was investigated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of the present thesis was to study the role of the epithelial sodium channel (ENaC) in clearance of fetal lung fluid in the newborn infant by measurement of airway epithelial expression of ENaC, of nasal transepithelial potential difference (N-PD), and of lung compliance (LC). In addition, the effect of postnatal dexamethasone on airway epithelial ENaC expression was measured in preterm infants with bronchopulmonary dysplasia (BPD). The patient population was formed of selected term newborn infants born in the Department of Obstetrics (Studies II-IV) and selected preterm newborn infants treated in the neonatal intensive care unit of the Hospital for Children and Adolescents (Studies I and IV) of the Helsinki University Central Hospital in Finland. A small population of preterm infants suffering from BPD was included in Study I. Studies I, III, and IV included airway epithelial measurement of ENaC and in Studies II and III, measurement of N-PD and LC. In Study I, ENaC expression analyses were performed in the Research Institute of the Hospital for Sick Children in Toronto, Ontario, Canada. In the following studies, analyses were performed in the Scientific Laboratory of the Hospital for Children and Adolescents. N-PD and LC measurements were performed at bedside in these hospitals. In term newborn infants, the percentage of amiloride-sensitive N-PD, a surrogate for ENaC activity, measured during the first 4 postnatal hours correlates positively with LC measured 1 to 2 days postnatally. Preterm infants with BPD had, after a therapeutic dose of dexamethasone, higher airway epithelial ENaC expression than before treatment. These patients were subsequently weaned from mechanical ventilation, probably as a result of the clearance of extra fluid from the alveolar spaces. In addition, we found that in preterm infants ENaC expression increases with gestational age (GA). In preterm infants, ENaC expression in the airway epithelium was lower than in term newborn infants. During the early postnatal period in those born both preterm and term airway epithelial βENaC expression decreased significantly. Term newborn infants delivered vaginally had a significantly smaller airway epithelial expression of αENaC after the first postnatal day than did those delivered by cesarean section. The functional studies showed no difference in N-PD between infants delivered vaginally and by cesarean section. We therefore conclude that the low airway epithelial expression of ENaC in the preterm infant and the correlation of N-PD with LC in the term infant indicate a role for ENaC in the pathogenesis of perinatal pulmonary adaptation and neonatal respiratory distress. Because dexamethasone raised ENaC expression in preterm infants with BPD, and infants were subsequently weaned from ventilator therapy, we suggest that studies on the treatment of respiratory distress in the preterm infant should include the induction of ENaC activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The pore of sodium channels contains a selectivity filter made of 4 amino acids, D/E/K/A. In voltage sensitive sodium channel (Nav) channels from jellyfish to human the fourth amino acid is Ala. This Ala, when mutated to Asp, promotes slow inactivation. In some Nav channels of pufferfishes, the Ala is replaced with Gly. We studied the biophysical properties of an Ala-to-Gly substitution (A1529G) in rat Nav1.4 channel expressed in Xenopus oocytes alone or with a beta 1 subunit. The Ala-to-Gly substitution does not affect monovalent cation selectivity and positively shifts the voltage-dependent inactivation curve, although co-expression with a beta 1 subunit eliminates the difference between A1529G and WT. There is almost no difference in channel fast inactivation, but the beta 1 subunit accelerates WT current inactivation significantly more than it does the A1529G channels. The Ala-to-Gly substitution mainly influences the rate of recovery from slow inactivation. Again, the beta 1 subunit is less effective on speeding recovery of A1529G than the WT. We searched Nav channels in numerous databases and noted at least four other independent Ala-to-Gly substitutions in Nav channels in teleost fishes. Thus, the Ala-to-Gly substitution occurs more frequently than previously realized, possibly under selection for alterations of channel gating.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The role of Na+ fluxes through voltage-gated sodium channels in the regulation of sperm cell function remains poorly understood. Previously, we reported that several genes encoding voltage-gated Na+ channels were expressed in human testis and mature spermatozoa. In this study, we analyzed the presence and function of the TTX-resistant VGSC a subunit Na(v)1.8 in human capacitated sperm cells. Using an RT-PCR assay, we found that the mRNA of the gene SCN10A, that encode Na-v1.8, was abundantly and specifically expressed in human testis and ejaculated spermatozoa. The Na-v1.8 protein was detected in capacitated sperm cells using three different specific antibodies against this channel. Positive immunoreactivity was mainly located in the neck and the principal piece of the flagellum. The presence of Na-v1.8 in sperm cells was confirmed by Western blot. Functional studies demonstrated that the increases in progressive motility produced by veratridine, a voltage-gated sodium channel activator, were reduced in sperm cells preincubated with TTX (10 mu M), the Na-v1.8 antagonist A-803467, or a specific Na-v1.8 antibody. Veratridine elicited similar percentage increases in progressive motility in sperm cells maintained in Ca2+-containing or Ca2+-free solution and did not induce hyperactivation or the acrosome reaction. Veratridine caused a rise in sperm intracellular Na+, [Na+](i), and the sustained phase of the response was inhibited in the presence of A-803467. These results verify that the Na+ channel Na-v1.8 is present in human sperm cells and demonstrate that this channel participates in the regulation of sperm function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The X-ray crystal structures of two crystalline forms of 5-(2,3,5-trichlorophenyl)-2,4-diaminopyrimidine, C10H7Cl3N4 (code name BW1003C87) (I) and (II), have been carried out at liquid nitrogen temperature. A detailed comparison of the two structures is given. Both are centrosymmetric, with structure (I) in the triclinic space group P (1) over bar unit cell a = 6.4870(10), b = 9.216(2), c = 12.016(2) angstrom, alpha = 75.78(3)degrees, beta = 89.95(3)degrees, gamma = 83.45(3)degrees, V = 691.5(2) angstrom(3), Z = 2 and density (calculated) = 1.544 Mg/m(3); and (II) in the monoclinic space group P2(1)/c, unit cell a = 12.000(2), b = 7.518(2), c = 13.450(3) angstrom, beta = 97.87(3)degrees, V = 1202.0(5) angstrom(3), Z = 4, Density (calculated) = 1.600 Mg/m(3). Structure (I) includes a solvated CH3OH in the lattice. Final R indices [I > 2sigma(I)] are R1 = 0.0427, wR2 = 0.1075 for (I) and R1 = 0.0487, wR2 = 0.1222 for (II). R indices (all data) are R1 = 0.0470, wR2 = 0.1118 for (I) and R1 = 0.0623, wR2 = 0.1299 for (II). 5-Phenyl-2,4 diaminopyrimidine and 6-phenyl-1,2,4 triazine derivatives, which include lamotrigine (3,5-diamino-6-(2,3-dichlorophenyl)-1,2,4-triazine), have been investigated for some time for their effects on the central nervous system. Both lamotrigine and 5-(2,3,5-trichlorophenyl)-2,4-diaminopyrimidine (code name BW1003C87), the subject of the present study, are anticonvulsant as well as neuroprotective in models of brain ischaemia and in a model of white matter ischaemia. BW1003C87 is a sodium channel blocker which also reduces the release of the neurotransmitter glutamate. The three dimensional structures reported here form part of a newly developed data base for the detailed investigation of members of this drug family and their biological activities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The epithelial sodium channel (ENaC) is preferentially assembled into heteromeric alphabetagamma complexes. The alpha and gamma (not beta) subunits undergo proteolytic cleavage by endogenous furin-like activity correlating with increased ENaC function. We identified full-length subunits and their fragments at the cell surface, as well as in the intracellular pool, for all homo- and heteromeric combinations (alpha, beta, gamma, alphabeta, alphagamma, betagamma, and alphabetagamma). We assayed corresponding channel function as amiloride-sensitive sodium transport (I(Na)). We varied furin-mediated proteolysis by mutating the P1 site in alpha and/or gamma subunit furin consensus cleavage sites (alpha(mut) and gamma(mut)). Our findings were as follows. (i) The beta subunit alone is not transported to the cell surface nor cleaved upon assembly with the alpha and/or gamma subunits. (ii) The alpha subunit alone (or in combination with beta and/or gamma) is efficiently transported to the cell surface; a surface-expressed 65-kDa alpha ENaC fragment is undetected in alpha(mut)betagamma, and I(Na) is decreased by 60%. (iii) The gamma subunit alone does not appear at the cell surface; gamma co-expressed with alpha reaches the surface but is not detectably cleaved; and gamma in alphabetagamma complexes appears mainly as a 76-kDa species in the surface pool. Although basal I(Na) of alphabetagamma(mut) was similar to alphabetagamma, gamma(mut) was not detectably cleaved at the cell surface. Thus, furin-mediated cleavage is not essential for participation of alpha and gamma in alphabetagamma heteromers. Basal I(Na) is reduced by preventing furin-mediated cleavage of the alpha, but not gamma, subunits. Residual current in the absence of furin-mediated proteolysis may be due to non-furin endogenous proteases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Voltage-gated sodium channels (Nav1.x) are important players in chronic pain. A particular interest has grown in Nav1.7, expressed in nociceptors, since mutations in its gene are associated to two inherited pain syndromes or insensitivity to pain. Rufinamide, a drug used to treat refractory epilepsy such as the Lennox-Gastaut syndrome, has been shown to reduce the number of action potentials in cortical neurons without completely blocking Na channels. Aim: The goal of this study was to investigate the effect of rufinamide on Nav1.7 current. Methods and results: Whole-cell patch clamp experiments were performed using HEK293 cells stably expressing Nav1.7. Rufinamide significantly decreased peak sodium current by 28.3, 21.2 and 12.5% at concentrations of 500, 100 and 50μM respectively (precise EC50 could not be calculated since higher rufinamide concentrations could not be achieved in physiological buffer solution). No significant difference on the V1/2 of voltage-dependence of activation was seen; however a shift in the steady-state inactivation curve was observed (-82.6 mV to -88.8 mV and -81.8 to -87.6 mV for 50 and 100 μM rufinamide respectively, p <0.005). Frequency-dependent inhibition of Nav1.7 was also influenced by the drug. One hundred μM rufinamide reduced the peak sodium current (in % of the peak current taken at the first sweep of a train of 50) from 90.8 to 80.8% (5Hz), 88.7 to 71.8% (10 Hz), 69.1 to 49.2% (25 Hz) and 22.3 to 9.8% (50 Hz) (all p <0.05). Onset of fast inactivation was not influenced by the drug since no difference in the time constant of current decay was observed. Conclusion: In the concentration range of plasma level in human treated for epilepsy, 15 μM, rufinamide only minimally blocks Nav1.7. However, it stabilizes the inactivated state and exerts frequencydependent inhibition of Nav1.7. These pharmacological properties may be of use in reducing ectopic discharges as a causal and symptom related contributor of neuropathic pain syndrome.