26 resultados para Neuroimmune
Resumo:
Cohabitation for 14 days with an Ehrlich tumor-bearing mice was shown, among others, to increase locomotor activity, and hypothalamic noradrenaline levels and turnover, to decrease the innate immune responses and animal resistance to tumor growth. The present experiment was designed to access the relevance of tactile, olfactory, and visual communication to the neuroimmune changes induced by cohabitation with a tumor-bearing partner. Mice that were not allowed to perceive odor cues from their sick partners presented no alterations in neutrophil activity, a fact not observed after visual deprivation and physical isolation. Mice use scents for intraspecies communication in many social contexts. Tumors produce volatile organic compounds released into the atmosphere through breath, sweat, and urine. The present results strongly suggest that volatile compounds released by Ehrlich tumor-injected mice are perceived by their conspecifics, inducing the neuroimmune changes reported for cohabitation with a sick companion. (C) 2010 Published by Elsevier B.V.
Resumo:
Cytokines are molecules that were initially discovered in the immune system as mediators of communication between various types of immune cells. However, it soon became evident that cytokines exert profound effects on key functions of the central nervous system, such as food intake, fever, neuroendocrine regulation, long-term potentiation, and behavior. In the 80's and 90's our group and others discovered that the genes encoding various cytokines and their receptors are expressed in vascular, glial, and neuronal structures of the adult brain. Most cytokines act through cell surface receptors that have one transmembrane domain and which transduce a signal through the JAK/STAT pathway. Of particular physiological and pathophysiological relevance is the fact that cytokines are potent regulators of hypothalamic neuropeptidergic systems that maintain neuroendocrine homeostasis and which regulate the body's response to stress. The mechanisms by which cytokine signaling affects the function of stress-related neuroendocrine systems are reviewed in this article.
Resumo:
Cohabitation for 14 days with Ehrlich tumor-bearing mice was shown to increase locomotor activity, to decrease hypothalamic noradrenaline (NA) levels, to increase NA turnover and to decrease innate immune responses and decrease the animals' resistance to tumor growth. Cage mates of a B16F10 melanoma-bearer mice were also reported to show neuroimmune changes. Chemosignals released by Ehrlich tumor-bearing mice have been reported to be relevant for the neutrophil activity changes induced by cohabitation. The present experiment was designed to further analyze the effects of odor cues on neuroimmune changes induced by cohabitation with a sick cage mate. Specifically, the relevance of chemosignals released by an Ehrlich tumor-bearing mouse was assessed on the following: behavior (open-field and plus maze); hypothalamic NA levels and turnover; adrenaline (A) and NA plasmatic levels; and host resistance induced by tumor growth. To comply with such objectives, devices specifically constructed to analyze the influence of chemosignals released from tumor-bearing mice were employed. The results show that deprivation of odor cues released by Ehrlich tumor-bearing mice reversed the behavioral, neurochemical and immune changes induced by cohabitation. Mice use scents for intraspecies communication in many social contexts. Tumors produce volatile organic compounds released into the atmosphere through breath, sweat, and urine. Our results strongly suggest that volatile compounds released by Ehrlich tumor-injected mice are perceived by their conspecifics, inducing the neuroimmune changes reported for cohabitation with a sick companion. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
The Vedic philosophy deals with harmony and balance between the mind and the body as well as interactions with nature. This ancient approach to health and well-being is being more and more appreciated in part as we understand the intimate relationship between the immune system, our major defense mechanism and the nervous system. Like other organ systems, the immune system is dependent on the central nervous system (CNS) and the endocrine system in its role for effective defense against foreign and domestic invaders.
Resumo:
Painful peripheral neuropathies are precipitated by nerve injury from disease or trauma. All such injuries will be accompanied by an inflammatory reaction, a neuritis, that will mobilize the immune system. The role of the inflammation itself is difficult to determine in the presence of structural damage to the nerve. A method has been devised to produce a focal neuritis in the rat sciatic nerve that involves no more than trivial structural damage to the nerve. This experimental focal neuritis produces neuropathic pain sensations (heat- and mechano-hyperalgesia, and cold- and mechano-allodynia) in the ipsilateral hind paw. The abnormal pain sensations begin in 1–2 days and last for 4–6 days, with a subsequent return to normal. These results suggest that there is a neuroimmune interaction that occurs at the outset of nerve injury (and perhaps episodically over time in slow developing conditions like diabetic neuropathy) that produces neuropathic pain. The short duration of the phenomena suggest that they may prime the system for more slowly developing mechanisms of abnormal pain (e.g., ectopic discharge in axotomized primary afferent neurons) that underlie the chronic phase of painful neuropathy.
Resumo:
CONTEXTO: A hipótese monoaminérgica da depressão não responde a uma série de questões, tais como "quais as causas dos distúrbios monoaminérgicos?" e "como explicar uma taxa de 30% de refratariedade aos antidepressivos?". Sendo assim, outras teorias têm sido propostas, entre elas, aquelas que enfocam as participações dos sistemas imune e endócrino. OBJETIVOS: Analisar criticamente o papel do sistema de resposta imunoinflamatória na depressão e discutir a interação dos antidepressivos com esse sistema, tanto do ponto de vista básico como clínico. MÉTODOS: Realizou-se pesquisa bibliográfica utilizando-se as bases de dados MedLine e SciELO. RESULTADOS: Pacientes vítimas de estresse crônico e depressão apresentam ativação das respostas imunoinflamatórias e do eixo hipotálamo-hipófise-adrenal, os quais, direta ou indiretamente, influenciam a neurotransmissão. Nesse sentido, a utilização de antidepressivos não apenas aumenta a disponibilidade de neurotransmissores na fenda sináptica, mas também induz mudança do padrão de resposta imune Th1 - pró-inflamatório - para o Th2, que é antiinflamatório. Além disso, sabe-se que pacientes não responsivos aos antidepressivos possuem o sistema imuneinflamatório mais ativo. No entanto, há uma série de dados controversos na literatura, havendo indícios de um perfil imune diferente de acordo com o tipo de depressão. CONCLUSÕES: A compreensão de aspectos neuroimunes presentes na depressão poderia contribuir para um melhor entendimento das bases biológicas desse transtorno e, possivelmente, para novas perspectivas na busca de uma terapêutica mais efetiva.
Resumo:
Objective: Looking for possible neuroimmune relationships, we analyzed the effects of methylenedioxymethamphetamine (MDMA) administration on neuroendocrine, neutrophil activity and leukocyte distribution in mice. Methods: Five experiments were performed. In the first, mice were treated with MDMA (10 mg/kg) 30, 60 min and 24 h prior to blood sample collection for neutrophil activity analysis. In the second experiment, the blood of nave mice was collected and incubated with MDMA for neutrophil activity in vitro analysis. In the third and fourth experiments, mice were injected with MDMA (10 mg/kg) and 60 min later, blood and brain were collected to analyze corticosterone serum levels and hypothalamic noradrenaline (NA) levels and turnover. In the last experiment, mice were injected with MDMA 10 mg/kg and 60 min later, blood, bone marrow and spleen were collected for leukocyte distribution analysis. Results: Results showed an increase in hypothalamic NA turnover and corticosterone serum levels 60 min after MDMA (10 mg/kg) administration, a decrease in peripheral blood neutrophil oxidative burst and a decrease in the percentage and intensity of neutrophil phagocytosis. It was further found that MDMA (10 mg/kg) treatment also altered leukocyte distribution in blood, bone marrow and spleen. In addition, no effects were observed for MDMA after in vitro exposure both in neutrophil oxidative burst and phagocytosis. Conclusion: The effects of MDMA administration (10 mg/kg) on neutrophil activity and leukocyte distribution might have been induced indirectly through noradrenergic neurons and/or hypothalamic-pituitary-adrenal axis activations. Copyright (C) 2009 S. Karger AG, Basel
Resumo:
Objectives: In this work, we searched for maternal separation effects on serum corticosterone levels and blood neutrophil activity in adult male A/J and C57BL/6 mouse offspring. Methods: 40 male A/J mice and 40 male C57BL/6 mice were divided within each strain into two groups. Mice in the maternal separation group were separated from their mothers (1 h/day) on postnatal days 0-13. Mice in the control group were left undisturbed. On postnatal day 45, blood was drawn from all mice and used to assess neutrophil activity by flow cytometry and serum corticosterone levels by radioimmunoassay. Results: The results showed that each mouse strain responded differently to maternal separation, but in both cases, serum corticosterone levels were affected. In both strains, adult mice that experienced maternal separation showed lower serum corticosterone levels than control mice. In relation to control mice kept together with their mothers, the levels of serum corticosterone were 72.7 and 36.36% lower in A/J and C57BL/6 mice submitted to maternal separation, respectively. The current findings showed that maternal separation increased neutrophil activity in mice after reaching adulthood. The observed effects, although in the same direction, differed between A/J and C57BL/6 mice. Maternal separation increased both the percentage and intensity of phagocytosis in C57BL/6 mice, but had no effects on A/J mice. Furthermore, maternal separation increased basal and propidium iodide-labeled Staphylococcus aureus-induced oxidative burst in A/J mice but did not affect oxidative burst in C57BL/6 mice. Finally, phorbol myristate acetate-induced oxidative burst increased in both strains. Conclusion: These results indicate that early maternal separation increases innate immunity, most likely by modifying hypothalamus-pituitary-adrenal axis activity. This suggests that maternal separation is a good model for stress which produces long-term neuroimmune changes whatever the animal species and strain used. Copyright (C) 2011 S. Karger AG, Basel
Resumo:
Studies on environmental consequences of stress on animal production have grown substantially in the last few years for economic and animal welfare reasons. Physiological, hormonal, and immunological deficits as well as increases in animals` susceptibility to diseases have been reported after different stressors in broiler chickens. The aim of the current experiment is to describe the effects of 2 different heat stressors (31 +/- 1 and 36 +/- 1 degrees C/10 h per d) applied to broiler chickens from d 35 to 42 of life on the corticosterone serum levels, performance parameters, intestinal histology, and peritoneal macrophage activity, correlating and discussing the obtained data under a neuroimmune perspective. In our study, we demonstrated that heat stress (31 +/- 1 and 36 +/- 1 degrees C) increased the corticosterone serum levels and decreased BW gain and food intake. Only chickens submitted to 36 +/- 1 degrees C, however, presented a decrease in feed conversion and increased mortality. We also showed a decrease of bursa of Fabricius (31 +/- 1 and 36 +/- 1 degrees C), thymus (36 +/- 1 degrees C), and spleen (36 +/- 1 degrees C) relative weights and of macrophage basal (31 +/- 1 and 36 +/- 1 degrees C) and Staphylococcus aureus-induced oxidative burst (31 +/- 1 degrees C). Finally, mild multifocal acute enteritis characterized by an increased presence of lymphocytes and plasmocytes within the jejunum`s lamina propria was also observed. The stress-induced hypothalamic-pituitary-adrenal axis activation was taken as responsible for the negative effects observed on the chickens` performance and immune function and also the changes of the intestinal mucosa. The present obtained data corroborate with others in the field of neuroimmunomodulation and open new avenues for the improvement of broiler chicken welfare and production performance.
Resumo:
Neuroimmunomodulation describes the field focused on understanding the mechanisms by which the central nervous system interacts with the immune system, potentially leading to changes in animal behavior. Nonetheless, not many articles dealing with neuroimmunomodulation employ behavior as an analytical endpoint. Even fewer papers deal with social status as a possible modifier of neuroimmune phenomena. In the described sets of experiments, we tackle both, using a paradigm of social dominance and subordination. We first review data on the effects of different ranks within a stable hierarchical relationship. Submissive mice in this condition display more anxiety-like behaviors, have decreased innate immunity, and show a decreased resistance to implantation and development of melanoma metastases in their lungs. This suggests that even in a stable, social, hierarchical rank, submissive animals may be subjected to higher levels of stress, with putative biological relevance to host susceptibility to disease. Second, we review data on how dominant and submissive mice respond differentially to lipopolysaccharide (LPS), employing a motivational perspective to sickness behavior. Dominant animals display decreased number and frequency in several aspects of behavior, particularly agonistic social interaction, that is, directed toward the submissive cage mate. This was not observed in submissive mice that maintained the required behavior expected by its dominant mate. Expression of sickness behavior relies on motivational reorganization of priorities, which are different along different social ranks, leading to diverse outcomes. We suggest that in vitro assessment of neuroimmune phenomena can only be understood based on the behavioral context in which they occur.