934 resultados para Network nodes
Resumo:
Systems biology is revealing multiple layers of regulatory networks that manifest spatiotemporal variations. Since genes and environment also influence the emergent property of a cell, the biological output requires dynamic understanding of various molecular circuitries. The metabolic networks continually adapt and evolve to cope with the changing milieu of the system, which could also include infection by another organism. Such perturbations of the functional networks can result in disease phenotypes, for instance tuberculosis and cancer. In order to develop effective therapeutics, it is important to determine the disease progression profiles of complex disorders that can reveal dynamic aspects and to develop mutitarget systemic therapies that can help overcome pathway adaptations and redundancy.
Resumo:
Differently from theoretical scale-free networks, most real networks present multi-scale behavior, with nodes structured in different types of functional groups and communities. While the majority of approaches for classification of nodes in a complex network has relied on local measurements of the topology/connectivity around each node, valuable information about node functionality can be obtained by concentric (or hierarchical) measurements. This paper extends previous methodologies based on concentric measurements, by studying the possibility of using agglomerative clustering methods, in order to obtain a set of functional groups of nodes, considering particular institutional collaboration network nodes, including various known communities (departments of the University of Sao Paulo). Among the interesting obtained findings, we emphasize the scale-free nature of the network obtained, as well as identification of different patterns of authorship emerging from different areas (e.g. human and exact sciences). Another interesting result concerns the relatively uniform distribution of hubs along concentric levels, contrariwise to the non-uniform pattern found in theoretical scale-free networks such as the BA model. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The Java programming language has potentially significant advantages for wireless sensor nodes but there is currently no feature-rich, open source virtual machine available. In this paper we present Darjeeling, a system comprising offline tools and a memory efficient run-time. The offline post-compiler tool analyzes, links and consolidates Java class files into loadable modules. The runtime implements a modified Java VM that supports multithreading and is designed specifically to operate in constrained execution environments such as wireless sensor network nodes and supports inheritance, threads, garbage collection, and loadable modules. We have demonstrated Java running on AVR128 and MSP430 microcontrollers at speeds of up to 70,000 JVM instructions per second.
Resumo:
This is the first outdoor test of small-scale dye sensitized solar cells (DSC) powering a standalone nanosensor node. A solar cell test station (SCTS) has been developed using standard DSC to power a gas nanosensor, a radio transmitter, and the control electronics (CE) for battery charging. The station is remotely monitored through wired (Ethernet cable) or wireless connection (radio transmitter) in order to evaluate in real time the performance of the solar cells powering a nanosensor and a transmitter under different weather conditions. We analyze trends of energy conversion efficiency after 60 days of operation. The 408 cm2 active surface module produces enough energy to power a gas nanosensor and a radio transmitter during the day and part of the night. Also, by using a variable programmable load we keep the system working on the maximum power point (MPP) quantifying the total energy generated and stored in a battery. Although this technology is at an early stage of development, these experiments provide useful data for future outdoor applications such as nanosensor network nodes.
Resumo:
Sensor network nodes exhibit characteristics of both embedded systems and general-purpose systems.A sensor network operating system is a kind of embedded operating system, but unlike a typical embedded operating system, sensor network operatin g system may not be real time, and is constrained by memory and energy constraints. Most sensor network operating systems are based on event-driven approach. Event-driven approach is efficient in terms of time and space.Also this approach does not require a separate stack for each execution context. But using this model, it is difficult to implement long running tasks, like cryptographic operations. A thread based computation requires a separate stack for each execution context, and is less efficient in terms of time and space. In this paper, we propose a thread based execution model that uses only a fixed number of stacks. In this execution model, the number of stacks at each priority level are fixed. It minimizes the stack requirement for multi-threading environment and at the same time provides ease of programming. We give an implementation of this model in Contiki OS by separating thread implementation from protothread implementation completely. We have tested our OS by implementing a clock synchronization protocol using it.
Resumo:
The development and deployment of distributed network-aware applications and services over the Internet require the ability to compile and maintain a model of the underlying network resources with respect to (one or more) characteristic properties of interest. To be manageable, such models must be compact, and must enable a representation of properties along temporal, spatial, and measurement resolution dimensions. In this paper, we propose a general framework for the construction of such metric-induced models using end-to-end measurements. We instantiate our approach using one such property, packet loss rates, and present an analytical framework for the characterization of Internet loss topologies. From the perspective of a server the loss topology is a logical tree rooted at the server with clients at its leaves, in which edges represent lossy paths between a pair of internal network nodes. We show how end-to-end unicast packet probing techniques could b e used to (1) infer a loss topology and (2) identify the loss rates of links in an existing loss topology. Correct, efficient inference of loss topology information enables new techniques for aggregate congestion control, QoS admission control, connection scheduling and mirror site selection. We report on simulation, implementation, and Internet deployment results that show the effectiveness of our approach and its robustness in terms of its accuracy and convergence over a wide range of network conditions.
Resumo:
Current Internet transport protocols make end-to-end measurements and maintain per-connection state to regulate the use of shared network resources. When a number of such connections share a common endpoint, that endpoint has the opportunity to correlate these end-to-end measurements to better diagnose and control the use of shared resources. A valuable characterization of such shared resources is the "loss topology". From the perspective of a server with concurrent connections to multiple clients, the loss topology is a logical tree rooted at the server in which edges represent lossy paths between a pair of internal network nodes. We develop an end-to-end unicast packet probing technique and an associated analytical framework to: (1) infer loss topologies, (2) identify loss rates of links in an existing loss topology, and (3) augment a topology to incorporate the arrival of a new connection. Correct, efficient inference of loss topology information enables new techniques for aggregate congestion control, QoS admission control, connection scheduling and mirror site selection. Our extensive simulation results demonstrate that our approach is robust in terms of its accuracy and convergence over a wide range of network conditions.
Resumo:
An overview of research on reconfigurable architectures for network processing applications within the Institute of Electronics, Communications and Information Technology (ECIT) is presented. Three key network processing topics, namely node throughput, Quality of Service (QoS) and security are examined where custom reconfigurability allows network nodes to adapt to fluctuating network traffic and customer demands. Various architectural possibilities have been investigated in order to explore the options and tradeoffs available when using reconfigurability for packet/frame processing, packet-scheduling and data encryption/decryption. This research has shown there is no common approach that can be applied. Rather the methodologies used and the cost-benefits for incorporation of reconfigurability depend on each of the functions considered, for example being well suited to encryption/decryption but not packet/frame processing. © 2005 IEEE.
Resumo:
Over the last decade, the most widespread approaches for traditional management were based on the Simple Network Management Protocol (SNMP) or Common Management Information Protocol (CMIP). However, they both have several problems in terms of scalability, due to their centralization characteristics. Although the distributed management approaches exhibit better performance in terms of scalability, they still underperform regarding communication costs, autonomy, extensibility, exibility, robustness, and cooperation between network nodes. The cooperation between network nodes normally requires excessive overheads for synchronization and dissemination of management information in the network. For emerging dynamic and large-scale networking environments, as envisioned in Next Generation Networks (NGNs), exponential growth in the number of network devices and mobile communications and application demands is expected. Thus, a high degree of management automation is an important requirement, along with new mechanisms that promote it optimally and e ciently, taking into account the need for high cooperation between the nodes. Current approaches for self and autonomic management allow the network administrator to manage large areas, performing fast reaction and e ciently facing unexpected problems. The management functionalities should be delegated to a self-organized plane operating within the network, that decrease the network complexity and the control information ow, as opposed to centralized or external servers. This Thesis aims to propose and develop a communication framework for distributed network management which integrates a set of mechanisms for initial communication, exchange of management information, network (re) organization and data dissemination, attempting to meet the autonomic and distributed management requirements posed by NGNs. The mechanisms are lightweight and portable, and they can operate in di erent hardware architectures and include all the requirements to maintain the basis for an e cient communication between nodes in order to ensure autonomic network management. Moreover, those mechanisms were explored in diverse network conditions and events, such as device and link errors, di erent tra c/network loads and requirements. The results obtained through simulation and real experimentation show that the proposed mechanisms provide a lower convergence time, smaller overhead impact in the network, faster dissemination of management information, increase stability and quality of the nodes associations, and enable the support for e cient data information delivery in comparison to the base mechanisms analyzed. Finally, all mechanisms for communication between nodes proposed in this Thesis, that support and distribute the management information and network control functionalities, were devised and developed to operate in completely decentralized scenarios.
Resumo:
Intra-session network coding has been shown to offer significant gains in terms of achievable throughput and delay in settings where one source multicasts data to several clients. In this paper, we consider a more general scenario where multiple sources transmit data to sets of clients over a wireline overlay network. We propose a novel framework for efficient rate allocation in networks where intermediate network nodes have the opportunity to combine packets from different sources using randomized network coding. We formulate the problem as the minimization of the average decoding delay in the client population and solve it with a gradient-based stochastic algorithm. Our optimized inter-session network coding solution is evaluated in different network topologies and is compared with basic intra-session network coding solutions. Our results show the benefits of proper coding decisions and effective rate allocation for lowering the decoding delay when the network is used by concurrent multicast sessions.
Resumo:
The number of online real-time streaming services deployed over network topologies like P2P or centralized ones has remarkably increased in the recent years. This has revealed the lack of networks that are well prepared to respond to this kind of traffic. A hybrid distribution network can be an efficient solution for real-time streaming services. This paper contains the experimental results of streaming distribution in a hybrid architecture that consist of mixed connections among P2P and Cloud nodes that can interoperate together. We have chosen to represent the P2P nodes as Planet Lab machines over the world and the cloud nodes using a Cloud provider's network. First we present an experimental validation of the Cloud infrastructure's ability to distribute streaming sessions with respect to some key streaming QoS parameters: jitter, throughput and packet losses. Next we show the results obtained from different test scenarios, when a hybrid distribution network is used. The scenarios measure the improvement of the multimedia QoS parameters, when nodes in the streaming distribution network (located in different continents) are gradually moved into the Cloud provider infrastructure. The overall conclusion is that the QoS of a streaming service can be efficiently improved, unlike in traditional P2P systems and CDN, by deploying a hybrid streaming architecture. This enhancement can be obtained by strategic placing of certain distribution network nodes into the Cloud provider infrastructure, taking advantage of the reduced packet loss and low latency that exists among its datacenters.
Resumo:
This paper presents the knowledge model of a distributed decision support system, that has been designed for the management of a national network in Ukraine. It shows how advanced Artificial Intelligence techniques (multiagent systems and knowledge modelling) have been applied to solve this real-world decision support problem: on the one hand its distributed nature, implied by different loci of decision-making at the network nodes, suggested to apply a multiagent solution; on the other, due to the complexity of problem-solving for local network administration, it was useful to apply knowledge modelling techniques, in order to structure the different knowledge types and reasoning processes involved. The paper sets out from a description of our particular management problem. Subsequently, our agent model is described, pointing out the local problem-solving and coordination knowledge models. Finally, the dynamics of the approach is illustrated by an example.
Resumo:
Macroscopic brain networks have been widely described with the manifold of metrics available using graph theory. However, most analyses do not incorporate information about the physical position of network nodes. Here, we provide a multimodal macroscopic network characterization while considering the physical positions of nodes. To do so, we examined anatomical and functional macroscopic brain networks in a sample of twenty healthy subjects. Anatomical networks are obtained with a graph based tractography algorithm from diffusion-weighted magnetic resonance images (DW-MRI). Anatomical con- nections identified via DW-MRI provided probabilistic constraints for determining the connectedness of 90 dif- ferent brain areas. Functional networks are derived from temporal linear correlations between blood-oxygenation level-dependent signals derived from the same brain areas. Rentian Scaling analysis, a technique adapted from very- large-scale integration circuits analyses, shows that func- tional networks are more random and less optimized than the anatomical networks. We also provide a new metric that allows quantifying the global connectivity arrange- ments for both structural and functional networks. While the functional networks show a higher contribution of inter-hemispheric connections, the anatomical networks highest connections are identified in a dorsal?ventral arrangement. These results indicate that anatomical and functional networks present different connectivity organi- zations that can only be identified when the physical locations of the nodes are included in the analysis.
Resumo:
Infrastructureless networks are becoming more popular with the increased prevalence of wireless networking technology. A significant challenge faced by these infrastructureless networks is that of providing security. In this paper we examine the issue of authentication, a fundamental component of most security approaches, and show how it can be performed despite an absence of trusted infrastructure and limited or no existing trust relationship between network nodes. Our approach enables nodes to authenticate using a combination of contextual information, harvested from the environment, and traditional authentication factors (such as public key cryptography). Underlying our solution is a generic threshold signature scheme that enables distributed generation of digital certificates.
Resumo:
Inference and optimisation of real-value edge variables in sparse graphs are studied using the tree based Bethe approximation optimisation algorithms. Equilibrium states of general energy functions involving a large set of real edge-variables that interact at the network nodes are obtained for networks in various cases. These include different cost functions, connectivity values, constraints on the edge bandwidth and the case of multiclass optimisation.