32 resultados para Neostigmine
Resumo:
The local anesthetic effects on neuromuscular junction and its influence on blockade produced by nondepolarizing neuromuscular blockers are still under-investigated; however, this interaction has been described in experimental studies and in humans. The aim of this study was to evaluate in vitro the interaction between ropivacaine and pancuronium, the influence on transmission and neuromuscular blockade, and the effectiveness of neostigmine and 4-aminopyridine to reverse the blockade. Rats were divided into groups (n=5) according to the study drug: ropivacaine (5μgmL(-1)); pancuronium (2μg.mL(-1)); ropivacaine+pancuronium. Neostigmine and 4-aminopyridine were used at concentrations of 2μgmL(-1) and 20μgmL(-1), respectively. The effects of ropivacaine on membrane potential and miniature end-plate potential, the amplitude of diaphragm responses before and 60minutes after the addition of ropivacaine (degree of neuromuscular blockade with pancuronium and with the association of pancuronium-ropivacaine), and the effectiveness of neostigmine and 4-aminopyridine on neuromuscular block reversal were evaluated. Ropivacaine did not alter the amplitude of muscle response (the membrane potential), but decreased the frequency and amplitude of the miniature end-plate potential. Pancuronium blockade was potentiated by ropivacaine, and partially and fully reversed by neostigmine and 4-aminopyridine, respectively. Ropivacaine increased the neuromuscular block produced by pancuronium. The complete antagonism with 4-aminopyridine suggests presynaptic action of ropivacaine.
Resumo:
P>Cholinergic agonists and acetylcholinesterase inhibitors, such as neostigmine, produce a muscarinic receptor-mediated antinociception in several animal species that depends on activation of spinal cholinergic neurons. However, neostigmine causes antinociception in sheep only in the early, and not late, postoperative period. In the present study, a model of postoperative pain was used to determine the antinociceptive effects of bethanechol (a muscarinic agonist) and neostigmine administered intrathecally 2, 24 or 48 h after a plantar incision in a rat hind paw. Changes in the threshold to punctate mechanical stimuli were evaluated using an automated electronic von Frey apparatus. Mechanical hyperalgesia was obtained following plantar incision, the effect being stronger during the immediate (2 h) than the late post-surgical period. Bethanechol (15-90 mu g/5 mu L) or neostigmine (1-3 mu g/5 mu L) reduced incision-induced mechanical hyperalgesia, the effects of both drugs being more intense during the immediate (2 h) than the late post-surgical period. The ED(50) for bethanechol injected at 2, 24 and 48 h was 5.6, 51.9 and 82.5 mu g/5 mu L, respectively. The corresponding ED(50) for neostigmine was 1.62, 3.02 and 3.8 mu g/5 mu L, respectively. The decline in the antinociceptive potency of neostigmine with postoperative time is interpreted as resulting from a reduction in pain-induced activation of acetylcholine-releasing descending pathways. However, the similar behaviour of bethanechol in the same model points to an additional mechanism involving intrinsic changes in spinal muscarinic receptors.
Resumo:
Antivenom in order to be effective in the treatment of coral snake accidents must be injected very soon after the bite owing to the rapid rate of absorption of the venom neurotoxins. As this is not always possible, other forms of treatment besides serotherapy must be employed to avoid asphyxia and death. Neostigmine and artificial respiration are used for this purpose. Neostigmine restores neuromuscular transmission if the venom-induced blockade results from a reversible interaction of its neurotoxins with the end-plate receptors. This is the mechanism of the neuromuscular blockade produced by the venom of M. frontalis snakes from centereastern and southern Brazil, and Argentine. Neostigmine is able, therefore, to antagonize the blockade, and has been shown to be very effective in the treatment of the experimental envenomation of dogs and monkeys. In the present communication, two cases of M. frontalis accidents treated with antivenom and neostigmine are reported. In both, neostigmine was successful in producing regression of the paralysis, confirming the effectiveness shown in the treatment of the poisoning induced in animals by M. frontalis venom.
Resumo:
The analgesic efficacy of cholinergic agonists and anticholinesterase agents has been widely recognized. The analgesic effect obtained by activating cholinergic mechanisms, however, seems to depend on the experimental pain model utilized for its evaluation. The antinociceptive effect of intraspinal neostigmine was examined in rats submitted concurrently to the tail flick and formalin tests. Neostigmine (8.25 and 16.5 nmol) produced a dose-dependent antinociceptive effect in the tail flick test (a model of phasic pain) and reduced the first phase (phasic pain) of the animal response to formalin also in a dose-dependent manner. The second phase (tonic pain) of the response to formalin, however, was slightly reduced after a longer period of time only by the higher dose of the anticholinesterase. The effect of neostigmine was not significantly different when the drug was injected into rats submitted exclusively to the tail flick test. The second phase of the animal response to formalin was slightly reduced by neostigmine (8.25 nmol) and strongly inhibited by the higher dose of the anticholinesterase when injection was made after the first phase. We conclude that phasic and tonic pain can both be controlled by high doses of neostigmine. In addition, we show that inhibition by a lower dose of neostigmine of the formalin-induced phasic pain did not prevent the subsequent occurrence of tonic pain produced by the irritant
Resumo:
Objective. Most snakebite deaths occur prior to hospital arrival; yet inexpensive, effective, and easy to administer out-of-hospital treatments do not exist. Acetylcholinesterase inhibitors can be therapeutic in neurotoxic envenomations when administered intravenously, but nasally delivered drugs could facilitate prehospital therapy for these patients. We tested the feasibility of this idea in experimentally envenomed mice. Methods. Mice received intraperitoneal injections of Naja naja venom 2.5 to 10 times the estimated LD50 and then received 5
Resumo:
The relative contribution of the pre- and post-synaptic effects to the neostigmine-induced recovery of neuromuscular transmission blocked by vecuronium was studied. A conjunction of myographical and electrophysiological techniques was employed. The preparation was the sciatic nerve-extensor digitorum longus muscle of the rat, in vitro. The physiological variables recorded were nerve-evoked twitches (generated at 0.1 Hz), tetanic contractions (generated at 50 Hz) and end-plate potentials (epps), generated in trains of 50 Hz. The epps were analyzed in: amplitude of first epp in the train; mean amplitude of the 30th to the 59th epp in the train (epps-plateau); half-decay time of the epp; early tetanic rundown of epps in the train; plateau tetanic rundown of epps in the train; quantal content of the epps and quantal size. In myographical experiments, a concentration of vecuronium was found (0.8 mu m) that affected both twitches and tetanic contractions and a concentration of neostigmine was found (0.048 mu m) that completely restored the twitch affected by vecuronium. The cellular effects of vecuronium and neostigmine, studied alone or in association, in the above-mentioned concentrations, were scrutinized by means of electrophysiological techniques. These showed that vecuronium alone decreased the peak amplitude, the quantal content of epps and the quantal size and reinforced the tetanic rundown of epps. Neostigmine alone increased the peak amplitude, the quantal content and the half-decay time of the epps. When employed in the presence of vecuronium, neostigmine increased both the quantal content of the epps (via a presynaptic effect) and the half-decay time of the epps (via a postsynaptic effect). Seeing the pre- and the post-synaptic effects of neostigmine were of similar magnitude, they permit to conclude that both these effects contributed significantly to the restoration by neostigmine of the neuromuscular transmission blocked by vecuronium.
Resumo:
Objective-To evaluate analgesic effects of epidurally administered neostigmine alone or in combination with morphine in dogs after ovariohysterectomy.Animals-40 healthy bitches.Procedures-After acepromazine premedication, anesthesia was induced. Dogs randomly received 1 of the following 4 epidural treatments 30 minutes before ovariohysterectomy (n = 10/group): saline (0.9% NaCl) solution (control), morphine (0.1 mg/kg), neostigmine (10 pg/kg), or morphine-neostigmine (0.1 mg/kg and 10 pg/kg, respectively). Analgesia was assessed for 24 hours after surgery by use of a visual analogue.scale (VAS; scale of 0 to 10) or numeric descriptive scale (NDS; scale of 0 to 24) and by the need for supplemental analgesia (morphine [0.5 mg/kg, IM] administered when VAS was >= 4 or NDS was >= 8).Results-Significantly more control dogs (n = 8) received supplemental analgesia, compared with the number of neostigmine-treated dogs (1); no dogs in the remaining groups received supplemental analgesia. Compared with values for the control dogs, the NDS scores were lower for morphine-neostigmine-treated dogs (from 2 to 6 hours and at 12 hours) and for morphine-treated dogs (all time points). The NDS scores were lower for morphine-treated dogs at 3, 12, and 24 hours, compared with values for neostigmine-treated dogs. The VAS was less sensitive than the NDS for detecting differences among groups.Conclusions and Clinical Relevance-Epidurally administered neostigmine reduced the use of supplemental analgesia after ovariohysterectorny in dogs. However, analgesic effects were less pronounced than for epidurally administered morphine or morphine-neostigmine. Adding neostigmine to epidurally administered morphine did not potentiate opioid-induced analgesia.
Resumo:
Seis cães adultos, de raças e sexos variados, com peso de 13,3±3,4kg (média±DP), foram utilizados no estudo. Os animais foram tranqüilizados com acepromazina (0,1mg/kg, IV) e, após 30 minutos, foram aleatoriamente submetidos à anestesia epidural com um dos seguintes tratamentos: lidocaína 2% 0,25ml/kg (controle); neostigmine 0,01mg/kg+lidocaína (NEO); metadona 0,3mg/kg+lidocaína (MET). Todos os animais foram submetidos aos três tratamentos com intervalo mínimo de uma semana. Foram mensuradas as freqüências cardíaca (FC) e respiratória (FR), a pressão arterial sistólica (PAS), o tempo para a perda do reflexo interdigital, a duração e a altura do bloqueio sensitivo, durante um período de 90 minutos. Não houve diferença significativa entre os tratamentos nos valores de FC, PAS e FR, bem como na duração do bloqueio sensitivo e no tempo para a perda do reflexo interdigital. No grupo MET, houve diminuição de FC dos 30 aos 90 minutos em relação ao valor basal. Bloqueio sensitivo mais cranial também foi observado em MET. A associação de neostigmine ou metadona não prolongou o período hábil de anestesia epidural produzido pela lidocaína em cães. A metadona, mas não o neostigmine, parece estender mais cranialmente o bloqueio epidural pela lidocaína.
Use of Sugammadex after Neostigmine Incomplete Reversal of Rocuronium-Induced Neuromuscular Blockade
Resumo:
Menezes CC, Peceguini LAM, Silva ED, Simoes CM Use of Sugammadex after Neostigmine Incomplete Reversal of Rocuronium-Induced Neuromuscular Blockade. Background and objectives: Neuromuscular blockers (NMB) have been used for more than half of a century in anesthesia and have always been a challenge for anesthesiologists. Until recently, the reversal of nondepolarizing neuromuscular blockers had only one option: the use of anticholinesterase agents. However, in some situations, such as deep neuromuscular blockade after high doses of relaxant, the use of anticholinesterase agents does not allow adequate reversal of neuromuscular blockade: Recently, sugammadex, a gamma-cyclodextrin, proved to be highly effective for reversal of NMB induced by steroidal agents. Case report: A female patient who underwent an emergency exploratory laparotomy after rapid sequence intubation with rocuronium 1.2 mg.kg(-1). At the end of surgery, the pat ent received neostigmine reversal of NMB. However, neuromuscular junction monitoring did not show the expected recovery, presenting residual paralysis. Sugammadex 2 mg.kg(-1) was used and the patient had complete reversal of NMB in just 2 minutes time. Conclusion: Adequate recovery of residual neuromuscular blockade is required for full control of the pharynx and respiratory functions in order to prevent complications. Adequate recovery can only be obtained by neuromuscular junction monitoring with TOF ratio greater than 0.9. Often, the reversal of NMB with anticholinesterase drugs may not be completely reversed. However, in the absence of objective monitoring this diagnosis is not possible. The case illustrates the diagnosis of residual NMB even after reversal with anticholinesterase agents, resolved with the administration of sugammadex, a safe alternative to reverse the NMB induced by steroidal non-depolarizing agents.
Resumo:
The aim of this paper was to verify whether AC biosusceptometry (ACB) is suitable for monitoring gastrointestinal (GI) contraction directly from smooth muscle in dogs, comparing with electrical recordings simultaneously. All experiments were performed in dogs with magnetic markers implanted under the serosa of the right colon and distal stomach, and their movements were recorded by ACB. Monopolar electrodes were implanted close to the magnetic markers and their electric potentials were recorded by electromyography (EMG). The effects of neostigmine, hyoscine butylbromide and meal on gastric and colonic parameters were studied. The ACB signal from the distal stomach was very similar to EMG; in the colonic recordings, however, within the same low-frequency band, ACB and EMG signals were characterized by simultaneity or a widely changeable frequency profile with time. ACB recordings were capable of demonstrating the changes in gastric and colonic motility determined by pharmacological interventions as well as by feeding. Our results reinforce the importance of evaluating the mechanical and electrical components of motility and show a temporal association between them. ACB and EMG arecomplementary for studying motility, with special emphasis on the colon. ACB offers an accurate method for monitoring in vivo GI motility.
Resumo:
Coral snakes, the New World Elapidae, are included in the genera Micniroides and Micrurus. The genus Mlcrurus comprises nearly all coral snake species and those which are responsible for human snake-bite accidents. The following generalizations concerning the effects induced by their venoms, and their venom-properties can be made. Coral snake venoms are neurotoxic, producing loss of muscle strenght and death by respiratory paralysis. Local edema and necrosis are not induced nor blood coagulation or hemorrhages. Proteolysis activity is absent or of very low grade. They display phospholipase A2 activity. Nephrotoxic effects are not evoked. The main toxins from elapid venoms are postsynaptic and presynaptic neurotoxins and cardiotoxins. Phospholipases A2 endowed with myonecrotic or cardiotoxin-like properties are important toxic components from some elapid venoms. The mode of action of Micrurus frontalis, M. lemniscatus, M. corallinus and M. fulvius venoms has been investigated in isolated muscle preparations and is here discussed. It is shown that while M. frontalis and M. lemniscatus venoms must contain only neurotoxins that act at the cholinergic end-plate receptor (postsynaptic neurotoxins), M. corallinus venom also inhibits evoked acetylcholine release by the motor nerve endings (presynaptic neurotoxin-like effect) and M. fulvius induces muscle fiber membrane depolarization (cardiotoxin-like effect). The effects produced by M. corallinus and M. fulvius venoms in vivo in dogs and M. frontalis venom in dogs and monkeys are also reported.
Resumo:
Em 02/07/1995, foi atendido no Instituto de Medicina Tropical do Amazonas, paciente masculino, 11 anos, acidentado em Manaus, por picada na região retroauricular direita, clínicamente compatível com aquele causado por Latrodectus. Observavam-se abalos musculares, febre, calafrios e sudorese intensa. Instituída terapêutica com neostigmine precedido de atropina, gluconato de cálcio, cimetidina, diazepam e hidrocortisona. No terceiro dia apresentava-se melhorado, consciente, orientado e com diminuição importante do edema palpebral. A despeito de uma melhora progressiva diária, no quinto dia surgiu eritema máculo-pápulo-vesiculoso. Em 14/07/1995 teve alta, assintomático. O caso relatado é o primeiro descrito na região Amazônica, ocorrido na periferia de Manaus e pode ter sido uma consequência da expansão urbana das duas últimas décadas.
Resumo:
BACKGROUND: In myasthenia gravis, antibody-mediated blockade of acetylcholine receptors at the neuromuscular junction abolishes the naturally occurring 'safety factor' of synaptic transmission. Acetylcholinesterase inhibitors provide temporary symptomatic treatment of muscle weakness but there is controversy about their long-term efficacy, dosage and side effects. This is the second update of a review published in The Cochrane Library Issue 2, 2011. OBJECTIVES: To evaluate the efficacy of acetylcholinesterase inhibitors in all forms of myasthenia gravis. SEARCH METHODS: On 8 July 2014 we searched the Cochrane Neuromuscular Disease Group Specialized Register, CENTRAL, MEDLINE and EMBASE for randomised controlled trials and quasi-randomised controlled trials regarding usage of acetylcholinesterase inhibitors in myasthenia gravis. Two authors scanned the articles for any study eligible for inclusion. We also contacted the authors and known experts in the field to identify additional published or unpublished data and searched clinical trials registries for ongoing trials. SELECTION CRITERIA: The types of studies were randomised or quasi-randomised trials. Participants were myasthenia gravis patients diagnosed by an internationally accepted definition. The intervention was treatment with any form of acetylcholinesterase inhibitor. Types of outcome measures Primary outcome measureImprovement in the presenting symptoms within one to 14 days of the start of treatment. Secondary outcome measures(1) Improvement in the presenting symptoms more than 14 days after the start of treatment.(2) Change in impairment measured by a recognised and preferably validated scale, such as the quantitative myasthenia gravis score, within one to 14 days and more than 14 days after the start of treatment.(3) Myasthenia Gravis Association of America post-intervention status more than 14 days after start of treatment.(4) Adverse events including muscarinic side effects. DATA COLLECTION AND ANALYSIS: One author (MMM) extracted the data, which were checked by a second author. We contacted study authors for extra information and collected data on adverse effects from the trials. MAIN RESULTS: We did not find any large randomised or quasi-randomised trials of acetylcholinesterase inhibitors in generalised myasthenia gravis either for the first version of this review or this update. One cross-over randomised trial using intranasal neostigmine in a total of 10 participants was only available as an abstract. It included three participants with ocular myasthenia gravis and seven with generalised myasthenia gravis. Symptoms of myasthenia gravis (measured as improvement in at least one muscle function) improved in nine of the 10 participants after the two-week neostigmine treatment phase. No participant improved after the placebo phase. Lack of detail in the report meant that the risk of bias was unclear. Adverse events were minor. AUTHORS' CONCLUSIONS: Except for one small and inconclusive trial of intranasal neostigmine, no other randomised controlled trials have been conducted on the use of acetylcholinesterase inhibitors in myasthenia gravis. The response to acetylcholinesterase inhibitors in observational studies is so clear that a randomised controlled trial depriving participants in a placebo arm of treatment would be difficult to justify.
Resumo:
RÉSUMÉ Introduction L'effet des agents myorelaxants ainsi que des anticholinestérases sur la profondeur d'anesthésie a été étudié avec des résultats contradictoires. C'est pourquoi nous avons évalué l'effet de l'atracurium et de la néostigmine sur le BIS (bispectral index) ainsi que sur les potentiels auditives évoqués (middle-latency auditory evoked potentials, A-Line® autoregressive index [AAI]). Méthodes Après avoir obtenu l'accord du comité d'éthique local, nous avons étudié 40 patients ayant donné leur consentement écrit, ASA I-II, âgé de 18-69 ans. L'anesthésie générale a consisté en anesthésie intra-veineuse à objectif de concentration avec du propofol et du remifentanil. La fonction de la jonction neuromusculaire était monitorée en continu au moyen d'un électromyographe. Le BIS et l'AAI ont été enregistrés en continu. Après avoir atteint des valeurs stables au niveau du BIS, les patients ont été attribués à deux groupes par randomisation. Les patients du groupe 1 ont reçu 0.4 mg kg-1 d'atracurium et 5 minutes plus tard le même volume de NaCI 0.9%, dans le groupe 2 la séquence d'injection était inversée, le NaCI 0.9% en premier et l'atracurium en deuxième. Au moment où le premier « twitch » d'un train de quatre atteignait 10% de l'intensité avant la relaxation, les patients ont été randomisés une deuxième fois. Les patients du groupe N ont reçu 0.04 mg kg-1 de néostigmine et 0.01 rn9 kg-1 de glycopyrrolate alors que le groupe contrôle (G) ne recevait que 0.01 mg kg-] de glycopyrrolate. Résultats : L 'injection d'atracurium ou de NaCI 0.9% n'a pas eu d'effet sur le BIS ou l'AAI. Après l'injection de néostigmine avec glycopyrrolate, le BIS et I `AAI a augmenté de manière significative (changement maximal moyen du BIS 7.1 ± 7.5, P< 0.001, de l'AAI 9.7 ± 10.5, P< 0.001). Suite à l'injection de glycopyrrolate seule, le BIS et l'AAI a augmenté également (changement maximal moyen du BIS 2.2 ± 3.4, P< 0.008, de l'AAI 3.5 ± 5.7, P< 0.012), mais cette augmentation était significativement moins importante que dans le groupe N (P< 0.012 pour le BIS, P< 0.027 pour l'AAI). Conclusion Ces résultats laissent supposer que la néostigmine peut altérer la profondeur de l'anesthésie. La diminution de la profondeur d'anesthésie enregistrée par le BIS et l'AAI correspond probablement à une réapparition brusque d'une stimulation centrale liée à la proprioception. Au contraire, lors de la curarisation, le tonus musculaire diminue de manière beaucoup plus progressive, pouvant ainsi expliquer l'absence d'effet sur la profondeur d'anesthésie. ABSTRACT Background. Conflicting effects of neuromuscular blocking drugs and anticholinesterases on depth of anaesthesia have been reported. Therefore we evaluated the effect of atracurium and neostigmine on bispectral index (BIS) and middle-latency auditory evoked potentials (AAI). Methods. We studied 40 patients (ASA I-II) aged 18-69 yr. General anaesthesia consisted of propofol and remifentanil by target-controlled infusion and neuromuscular function was monitored by electromyography. When BIS reached stable values, patients were randomly assigned to one of two groups. Group I received atracurium 0.4 mg kg-1 and, 5 min later, the same volume of NaCl 0.9%; group 2 received saline first and then atracurium. When the first twitch of a train of four reached 10% of control intensity, patients were again randomized: one group (N) received neostigmine 0.04 mg kg-1 and glycopyrrolate 0.01 mg kg-1, and the control group (G) received only glycopyrrolate. Results. Injection of atracurium or NaCl 0.9% had no effect on BIS or AAI. After neostigmine¬glycopyrrolate, BIS and AAI increased significantly (mean maximal change of BIS 7.1 [SD 7.5], P<0.001; mean maximal change of AAI 9.7 [10.5], P<0.001). When glycopyrrolate was injected alone BIS and AAI also increased (mean maximal change of BIS 2.2 [3.4], P=0.008; mean maximal change of AAI 3.5 [5.7], P=0.012), but this increase was significantly less than in group N (P=0.012 for BIS; P=0.027 for AAI). Conclusion. These data suggest that neostigmine alters the state of propofol-remifentanil anaesthesia and may enhance recovery.
Resumo:
BACKGROUND: In myasthenia gravis, antibody-mediated blockade of acetylcholine receptors at the neuromuscular junction abolishes the naturally occurring 'safety factor' of synaptic transmission. Acetylcholinesterase inhibitors provide temporary symptomatic treatment of muscle weakness, but there is controversy about their long-term efficacy, dosage and side effects. OBJECTIVES: To evaluate the efficacy of acetylcholinesterase inhibitors in all forms of myasthenia gravis. SEARCH STRATEGY: We searched The Cochrane Neuromuscular Disease Group Specialized Register (5 October 2009), The Cochrane Central Register of Controlled Trials CENTRAL) (The Cochrane Library Issue 3, 2009), MEDLINE (January 1966 to September 2009), EMBASE (January 1980 to September 2009) for randomised controlled trials and quasi-randomised controlled trials regarding usage of acetylcholinesterase inhibitors in myasthenia gravis. Two authors scanned the articles for any study eligible for inclusion. We also contacted the authors and known experts in the field to identify additional published or unpublished data. SELECTION CRITERIA: Types of studies: all randomised or quasi-randomised trials.Types of participants: all myasthenia gravis patients diagnosed by an internationally accepted definition.Types of interventions: treatment with any form of acetylcholinesterase inhibitor.Types of outcome measuresPrimary outcome measureImprovement in the presenting symptoms within 1 to 14 days of the start of treatment.Secondary outcome measures(1) Improvement in the presenting symptoms more than 14 days after the start of treatment.(2) Change in impairment measured by a recognised and preferably validated scale, such as the quantitative myasthenia gravis score within 1 to 14 days and more than 14 days after the start of treatment.(3) Myasthenia Gravis Association of America post-intervention status more than 14 days after start of treatment.(4) Adverse events: muscarinic side effects. DATA COLLECTION AND ANALYSIS: One author (MMM) extracted the data, which were checked by a second author. We contacted study authors for extra information and collected data on adverse effects from the trials. MAIN RESULTS: We did not find any large randomised or quasi-randomised trials of acetylcholinesterase inhibitors in generalised myasthenia gravis. One cross-over randomised trial using intranasal neostigmine in a total of 10 subjects was only available as an abstract. AUTHORS' CONCLUSIONS: Except for one small and inconclusive trial of intranasal neostigmine, no randomised controlled trial has been conducted on the use of acetylcholinesterase inhibitors in myasthenia gravis. Response to acetylcholinesterase inhibitors in observational studies is so clear that a randomised controlled trial depriving participants in the placebo arm of treatment would be difficult to justify.