994 resultados para Neodymium:yttrium-aluminum-garnet (Nd:YAG)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: To evaluate the potential of 980-nm gallium aluminum arsenide (GaAlAs) and 1064-nm neodymium-doped yttrium aluminum garnet (Nd:YAG) lasers to reduce bacteria after irradiation of implant surfaces contaminated with Enterococcus faecalis and Porphyromonas gingivalis and on irradiated implant surface morphology. Background: Despite the frequency of implant success, some implant loss is related to peri-implantitis because of difficulty in eliminating the biofilm. Methods: Implants (3.75 x 13 mm) with machined surfaces, surfaces sand blasted with titanium oxide (TiO(2)), and sand-blasted and acid-etched surfaces were exposed to P. gingivalis and E. faecalis cultures and irradiated with 980-nm GaAlAs or 1064-nm Nd: YAG lasers. After laser treatments, the number of remaining colony-forming units and implant surface morphology were analyzed using scanning electron microscopy (SEM). Results: The Nd: YAG laser was able to promote a total contamination reduction on all implants irradiated. The results with the GaAlAs laser showed 100% bacteria reduction on the implants irradiated with 3 W. Irradiation with 2.5 W and 3 W achieved 100% of bacteria reduction on P. gingivalis-contaminated implants. Decontamination was not complete for the sand-blasted TiO(2) (78.6%) and acid-etched surfaces (49.4%) contaminated with E. faecalis and irradiated with 2.5 W. SEM showed no implant surface changes. Conclusion: The wavelengths used in this research provided bacteria reduction without damaging implant surfaces. New clinical research should be encouraged for the use of this technology in the treatment of peri-implantitis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this in vitro study was to evaluate the effect of neodymium:yttrium-aluminum-garnet (Nd:YAG) laser irradiation on intracanal dentin surface by SEM analysis and its interference in the apical seal of filled canals. After endodontic treatment procedures, 34 maxillary human incisors were randomly assigned to 2 groups. In the negative control group (n=17), no additional treatment was performed and teeth were filled with vertically condensed gutta-percha; in the laser-treated group (n=17), the root canals were irradiated with Nd:YAG laser (1.5 W, 100 mJ, 15 Hz) before filling as described for the control group. Two specimens of each group were prepared for SEM analysis to evaluate the presence and extent of morphological changes and removal of debris; the other specimens were immersed in 0.5% methylene blue dye (pH 7.2) for 24 h for evaluation of the linear dye leakage at the apical third. SEM analysis of the laser-treated group showed dentin fusion and resolidification without smear layer or debris. The Student’s t-test showed that the laser-treated group had significantly less leakage in apical third than the control group. Within the limitations of this study, it may be concluded that the morphological changes on the apical intraradicular dentin surface caused by Nd:YAG laser resulted in less linear dye apical leakage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this in vitro study was to evaluate the effect of neodymium:yttrium-aluminum-garnet (Nd:YAG) laser irradiation on intracanal dentin surface by SEM analysis and its interference in the apical seal of filled canals. After endodontic treatment procedures, 34 maxillary human incisors were randomly assigned to 2 groups. In the negative control group (n=17), no additional treatment was performed and teeth were filled with vertically condensed gutta-percha; in the laser-treated group (n=17), the root canals were irradiated with Nd:YAG laser (1.5 W, 100 mJ, 15 Hz) before filling as described for the control group. Two specimens of each group were prepared for SEM analysis to evaluate the presence and extent of morphological changes and removal of debris; the other specimens were immersed in 0.5% methylene blue dye (pH 7.2) for 24 h for evaluation of the linear dye leakage at the apical third. SEM analysis of the laser-treated group showed dentin fusion and resolidification without smear layer or debris. The Student's t-test showed that the laser-treated group had significantly less leakage in apical third than the control group. Within the limitations of this study, it may be concluded that the morphological changes on the apical intraradicular dentin surface caused by Nd:YAG laser resulted in less linear dye apical leakage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: This in vitro study aimed to analyze the influence of neodymium-doped yttrium aluminum garnet (Nd:YAG) laser irradiation on the efficacy of titanium tetrafluoride (TiF(4)) and sodium fluoride (NaF) varnishes and solutions to protect enamel against erosion. Background data: The effect of Nd:YAG laser irradiation on NaF and AmF was analyzed; however, there is no available data on the interaction between Nd:YAG laser irradiation and TiF(4). Methods: Bovine enamel specimens were pre-treated with NaF varnish, TiF(4) varnish, NaF solution, TiF(4) solution, placebo varnish, Nd:YAG (84.9 J/cm(2)), Nd:YAG prior to or through NaF varnish, Nd:YAG prior to or through TiF(4) varnish, Nd:YAG prior to or through NaF solution, Nd:YAG prior to or through TiF(4) solution, and Nd:YAG prior to or through placebo varnish. Controls remained untreated. Ten specimens in each group were then subjected to an erosive demineralization (Sprite Zero, 4x90 s/day) and remineralization (artificial saliva, between the erosive cycles) cycling for 5 days. Enamel loss was measured profilometrically (mu m). Additionally, treated but non-eroded specimens were additionally analyzed by scanning electron microscope (SEM) (each group n-2). The data were statistically analyzed by ANOVA and Tukey's post-hoc test (p < 0.05). Results: Only TiF(4) varnish (1.8 +/- 0.6 mu m), laser prior to TiF(4) varnish (1.7 +/- 0.3 mu m) and laser prior to TiF(4) solution (1.4 +/- 0.3 mu m) significantly reduced enamel erosion compared to the control (4.1 +/- 0.6 mu m). SEM pictures showed that specimens treated with TiF(4) varnish presented a surface coating. Conclusions: Nd:YAG laser irradiation was not effective against enamel erosion and it did not have any influence on the efficacy of F, except for TiF(4) solution. On the other hand, TiF(4) varnish protected against enamel erosion, without the influence of laser irradiation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this study was to evaluate the influence of various pulse widths with different energy parameters of erbium:yttrium-aluminum-garnet (Er:YAG) laser (2.94 mu m) on the morphology and microleakage of cavities restored with composite resin. Identically sized class V cavities were prepared on the buccal surfaces of 54 bovine teeth by high-speed drill (n = 6, control, group 1) and prepared by Er:YAG laser (Fidelis 320A, Fotona, Slovenia) with irradiation parameters of 350 mJ/ 4 Hz or 400 mJ/2 Hz and pulse width: group 2, very short pulse (VSP); group 3, short pulse (SP); group 4, long pulse (LP); group 5, very long pulse (VLP). All cavities were filled with composite resin (Z-250-3 M), stored at 37A degrees C in distilled water, polished after 24 h, and thermally stressed (700 cycles/5-55A degrees C). The teeth were impermeabilized, immersed in 50% silver nitrate solution for 8 h, sectioned longitudinally, and exposed to Photoflood light for 10 min to reveal the stain. The leakage was evaluated under stereomicroscope by three different examiners, in a double-blind fashion, and scored (0-3). The results were analyzed by Kruskal-Wallis test (P > 0.05) and showed that there was no significant differences between the groups tested. Under scanning electron microscopy (SEM) the morphology of the cavities prepared by laser showed irregular enamel margins and dentin internal walls, and a more conservative pattern than that of conventional cavities. The different power settings and pulse widths of Er:YAG laser in cavity preparation had no influence on microleakage of composite resin restorations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to evaluate the effect of erbium:yttrium-aluminum-garnet (Er:YAG) laser (2.94 mu m) irradiation on the removal of root surface smear layer of extracted human teeth and to compare its efficacy with that of citric acid, ethylenediamine tetra-acetic acid (EDTA), or a gel containing a mixture of tetracycline hydrochloride (HCl) and citric acid, using scanning electron microscopy (SEM). Thirty human dentin specimens were randomly divided into six groups: G1 (control group), irrigated with 10 ml of physiologic saline solution; G2, conditioned with 24% citric acid gel; G3, conditioned with 24% EDTA gel; G4, conditioned with a 50% citric acid and tetracycline gel; G5, irradiated with Er:YAG laser (47 mJ/10 Hz/5.8 J/cm(2)/pulse); G6, irradiated with Er:YAG laser (83 mJ/10 Hz/10.3 J/cm(2)/pulse). Electron micrographs were obtained and analyzed according to a rating system. Statistical analysis was conducted with Kruskal-Wallis and Mann-Whitney tests (P < 0.05). G1 was statistically different from all the other groups; no statistically significant differences were observed between the Er:YAG laser groups and those undergoing the other treatment modalities. When the two Er:YAG laser groups were compared, the fluency of G6 was statistically more effective in smear layer removal than the one used in G5 (Mann-Whitney test, P < 0.01). Root surfaces irradiated by Er:YAG laser had more irregular contours than those treated by chemical agents. It can be concluded that all treatment modalities were effective in smear layer removal. The results of our study suggest that the Er:YAG laser can be safely used to condition diseased root surfaces effectively. Furthermore, the effect of Er:YAG laser irradiation on root surfaces should be evaluated in vivo so that its potential to enhance the healing of periodontal tissues can be assessed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this in vitro study was to investigate the effect of erbium:yttrium-aluminum-garnet (Er:YAG) laser irradiation on dentinal collagen by transmission electron microscopy and to analyze the resin-dentin interface by scanning electron microscopy. A tensile bond strength test was also applied. Specimens from 69 sound human third molars were randomly divided into three groups: control (no laser), and two irradiated groups, laser 250 (250 mJ/2 Hz) and laser 400 (400 mJ/4 Hz). Then, specimens were restored with two adhesive systems, an etch-and-rinse or a self-etch system. Although ultrastructural examination showed a modified surface in the irradiated dentin, there was no statistical difference in bond strength values between the laser groups and controls (P < 0.05). In conclusion, the use of Er:YAG laser for ablating human dentin did not alter the main adhesion parameters when compared with those obtained by conventional methods, thus reinforcing its use in restorative dentistry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study evaluated the microhardness of superficial and deep dentin irradiated with different erbium:yttrium-aluminum-garnet (Er:YAG) laser energies. Seventy-two molars were bisected and randomly assigned to two groups (superficial dentin or deep dentin) and into six subgroups (160 mJ, 200 mJ, 260 mJ, 300 mJ, 360 mJ, and control). After irradiation, the cavities were longitudinally bisected. Microhardness was measured at six points (20 A mu m, 40 A mu m, 60 A mu m, 80 A mu m, 100 A mu m, and 200 A mu m) under the cavity floor. Data were submitted to analysis of variance (ANOVA) and Fisher`s tests (alpha = 0.05). Superficial dentin presented higher microhardness than deep dentin; energy of 160 mJ resulted in the highest microhardness and 360 mJ the lowest one. Values at all points were different, exhibiting increasing microhardness throughout; superficial dentin microhardness was the highest at 20 A mu m with 160 mJ energy; for deep dentin, microhardness after irradiation at 160 mJ and 200 mJ was similar to that of the control. The lowest energy increased superficial dentin microhardness at the closest extent under the cavity; deep dentin microhardness was not altered by energies of 160 mJ and 200 mJ.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Considering the increase in esthetic restorative materials and need for improvement in unsatisfactory restoration substitution with minimal inadvertent removal of healthy tissues, this study assessed the efficacy of erbium:yttrium-aluminum-garnet (Er:YAG) laser for composite resin removal and the influence of pulse repetition rate on the morphological analyses of the cavity by scanning electron microscope. Composite resin fillings were placed in cavities (1.0 mm deep) prepared in bovine teeth, and the 75 specimens were randomly assigned to five groups according to the technique used for composite filling removal (high-speed diamond bur, group I, as a control, and Er:YAG laser, 250 mJ output energy and 80 J/cm(2) energy density, using different pulse repetition rates: group II, 2 Hz; group III, 4 Hz; group IV, 6 Hz; group V, 10 Hz). After the removal, the specimens were split in the middle, and we analyzed the surrounding and deep walls to check for the presence of restorative material. The estimation was qualitative. The surfaces were examined with a scanning electron microscope. The results revealed that the experimental groups presented bigger amounts of remaining restorative material. The scanning electron microscopy (SEM) analyses showed irregularities of the resultant cavities of the experimental groups that increased proportionally with increase in repetition rate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Salivary contamination is one of the factors that can disturb the sealing process and interfere in the longevity of pit and fissure sealants. Erbium : yttrium-aluminum-garnet (Er : YAG) laser could influence the bond strength of enamel and increase the acid resistance. To evaluate the influence of Er : YAG laser on the shear bond strength of a sealant to a salivary contaminated enamel surface. Twenty-four third molars had the roots sectioned 2 mm coronal to the cementoenamel junction. The crowns were mesiodistally sectioned providing 48 halves that were embedded in polyester resin. Enamel was flattened and a 2-mm diameter bonding area was demarcated. Specimens were randomly assigned to two groups according to the superficial pretreatment-37% phosphoric acid (A) and Er : YAG laser (80 mJ/2 Hz) + phosphoric acid (L), which were subdivided into two groups (N = 12), without salivary contamination (C) and with salivary contamination (SC). To contaminate the specimens, 0.25 mL of human fresh saliva was applied for 20 seconds and then dried. Fluroshield sealant was applied in all specimens. After storage, shear bond strength of samples were tested in a universal testing machine. Means in MPa were: AC-14.61 (+/- 2.52); ASC-6.66 (+/- 2.34); LC-11.91 (+/- 1.34); and LSC-2.22 (+/- 0.66). Statistical analysis revealed that surfaces without salivary contamination and with acid treatment had the highest mean (p < 0.05). The group with salivary contamination treated by Er : YAG laser followed by phosphoric acid application presented the lowest bond values (p < 0.05). The phosphoric acid etching under dry condition yielded better bonding performance. Er : YAG laser was not able to increase the effectiveness of conventional acid etching of enamel in the bond of sealants in both dry and wet conditions. Under the conditions of this study, the conventional etching protocol (phosphoric acid without salivary contamination) is still preferable to laser-conditioning enamel surface prior to sealant application.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study sought to evaluate the influence of thermocycling and water storage on the microtensile bond strength of composite resin bonded to erbium:yttrium-aluminum-garnet (Er:YAG)-irradiated and bur-prepared enamel. Eighty bovine incisors were selected and sectioned. Specimens were ground to produce a flat enamel surface. Samples were randomly assigned according to cavity preparation device: (I) Er:YAG laser and (II) high-speed turbine, and were subsequently restored with composite resin. They were subdivided according to the duration of water storage (WS)/number of thermocycles (TCs): 24 h WS/no TCs; 7 days WS/500 TCs; 1 month WS/2,000 TCs; 6 months WS/12,000 TCs. The teeth were sectioned into 1.0 mm(2)-thick slabs and subjected to tensile stress in a universal testing machine. Data were submitted to two-way analysis of variance (ANOVA) and Tukey`s test at a 0.05 significance level. The different periods of water storage and thermocycling did not influence the microtensile bond strength (A mu TBS) values in the Er:YAG laser-prepared groups. In bur-prepared enamel, the group submitted to 12,000 TCs/6 months` WS (IID) showed a significant decrease in bond strength values when compared to the group stored in water for 24 h and not submitted to thermocycling (IIA), but values were statistically similar to those obtained in all Er:YAG laser groups and in the bur- prepared groups degraded with 500 TCs/1 week WS (IIB) or 2,000 TCs/1 month WS (IIC). It may be concluded that adhesion of an etch-and-rinse adhesive to Er:YAG laser-irradiated enamel was not affected by the methods used to simulate degradation of the adhesive interface and was similar to adhesion in the bur-prepared groups in all periods of water storage and thermocycling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to evaluate the effect of erbium:yttrium-aluminum-garnet (Er:YAG) laser (2.94 mu m) irradiation on the removal of root surface smear layer of extracted human teeth and to compare its efficacy with that of citric acid, ethylenediamine tetra-acetic acid (EDTA), or a gel containing a mixture of tetracycline hydrochloride (HCl) and citric acid, using scanning electron microscopy (SEM). Thirty human dentin specimens were randomly divided into six groups: G1 (control group), irrigated with 10 ml of physiologic saline solution; G2, conditioned with 24% citric acid gel; G3, conditioned with 24% EDTA gel; G4, conditioned with a 50% citric acid and tetracycline gel; G5, irradiated with Er:YAG laser (47 mJ/10 Hz/5.8 J/cm(2)/pulse); G6, irradiated with Er:YAG laser (83 mJ/10 Hz/10.3 J/cm(2)/pulse). Electron micrographs were obtained and analyzed according to a rating system. Statistical analysis was conducted with Kruskal-Wallis and Mann-Whitney tests (P < 0.05). G1 was statistically different from all the other groups; no statistically significant differences were observed between the Er:YAG laser groups and those undergoing the other treatment modalities. When the two Er:YAG laser groups were compared, the fluency of G6 was statistically more effective in smear layer removal than the one used in G5 (Mann-Whitney test, P < 0.01). Root surfaces irradiated by Er:YAG laser had more irregular contours than those treated by chemical agents. It can be concluded that all treatment modalities were effective in smear layer removal. The results of our study suggest that the Er:YAG laser can be safely used to condition diseased root surfaces effectively. Furthermore, the effect of Er:YAG laser irradiation on root surfaces should be evaluated in vivo so that its potential to enhance the healing of periodontal tissues can be assessed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background and objectives: To assess the microhardness of dentin subsurface after Er:yttrium-aluminum-garnet (YAG) and Nd:YAG laser irradiation. Study design/materials and methods: Twenty-four bovine incisors, without pulp, were used. The vestibular surface was worn out until the dentin was reached and divided in mesial and distal regions. The samples were divided into two groups: GI-distal, irradiated by Er: YAG laser, and GII-distal, irradiated by Nd: YAG laser. The mesial area was protected so as to not receive the laser irradiation. The measurements were made on Vickers digital microhardmeter. Results: For GI-there was no significant statistical difference, Cl(-4.59 to 0.78), between the values of irradiated (55.61 +/- 4.38) and unirradiated (57.51 +/- 4.00) areas. For GII-the values were higher for the irradiated (62.21 +/- 6.48) compared to the unirradiated (57.82 +/- 5.42) area, CI(1.65 +/- to 7.13). Conclusions: There was an increase of dentin microhardness when the Nd: YAG was used, but the Er: YAG did not cause significant alterations in dentin microhardness. (c) 2007 Laser Institute of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)