960 resultados para NY-ESO-1 PROTEIN


Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUÇÃO: o câncer é a doença que mais mata pessoas com idade abaixo de 85 anos e é um problema de saúde pública. Os tumores podem expressar em determinada fase de seu desenvolvimento proteínas anômalas que podem ser alvo de métodos diagnósticos e de intervenções terapêuticas. A expressão de NY-ESO-1 é detectada em 20 a 40% dos melanomas. Há evidências que esta expressão é mais freqüente em tumores de estágios mais avançados e está associada a um pior prognóstico. OBJETIVOS: determinar a frequência de expressão da proteína NY-ESO-1 no melanoma cutâneo e tentar correlacioná-la com o índice de Breslow, aspectos histopatológicos do melanoma, incluindo o infiltrado linfocítico tumoral, e a morbi-mortalidade dos pacientes. MÉTODOS: o presente estudo é longitudinal de coorte retrospectiva e foi realizado de agosto de 2009 a outubro de 2015. Foram selecionados 89 melanomas de 87 pacientes do Ambulatório de Tumores do Departamento de Dermatologia da FMUSP, divididos em 3 grupos, sendo: grupo 1: 34 melanomas com índice de Breslow <= 1,0 mm; grupo 2: 29 melanomas com índice de Breslow entre 1,1 - 4,0 mm e grupo 3: 26 melanomas com índice de Breslow >= 4,0 mm. As lâminas dos exames anátomo-patológicos destes pacientes foram revisadas quanto ao diagnóstico de melanoma, seu índice de Breslow e a presença de infiltrado linfocítico tumoral. A seguir, realizou-se exame de imunohistoquímica para a determinação da presença do antígeno NY-ESO-1 em todos os 89 tumores coletados e em mais 20 nevos (11 displásicos e 9 intradérmicos) escolhidos ao acaso. Através da revisão dos dados do prontuário, foram obtidos os dados clínicos de: idade, sexo, raça, fototipo da pele, local de aparecimento do melanoma, status do linfonodo sentinela quando realizado, desenvolvimento de metástases e sobrevida dos pacientes. Os dados anátomo-patológicos do tumor analisados foram: tipo histológico, presença de ulceração, e tipo de infiltrado linfocítico tumoral. Nos melanomas que apresentavam infiltrado linfocítico tumoral, foram realizados testes imunohistoquímicos para pesquisa de células CD3+, CD8+, FoxP3+ e CD8+FoxP3+ (duplamente positivas). RESULTADOS: O antígeno NY-ESO-1 esteve presente em 19% dos melanomas cutâneos primários e não foi detectado em nenhum dos 20 nevos pesquisados. A expressão do antígeno NY-ESO-1 esteve estatisticamente relacionada a tumores com espessuras maiores. Apresentou também uma associação inversa com o tipo extensivo superficial em relação aos outros tipos histológicos. O infiltrado linfocítico tumoral dos melanomas NY-ESO-1 positivos continha menor número de células CD3+, que se encontravam isoladas ou arranjadas em pequenos grupos de até 5 células, o que contrastava significantemente com os tumores NY-ESO-1 negativos, com maior densidade de células CD3+, dispostas em grandes grupos, com 6 ou mais células. A expressão da proteína NY-ESO-1 não esteve associada à idade, ao sexo, ao fototipo, ao sítio primário do tumor, à presença de ulceração, ao status do linfonodo sentinela, ao desenvolvimento de metástases ou à sobrevida. CONCLUSÕES: Há expressão de NY-ESO-1 em uma porcentagem considerável dos melanomas, principalmente nos mais espessos. O menor número de células CD3+ no infiltrado linfocítico tumoral, acrescido ao fato destas células estarem isoladas ou em pequenos grupos, sugere que embora imunogênico, a expressão do antígeno NY-ESO-1 não resulta num estímulo eficaz do sistema imune no combate ao tumor. O desenvolvimento de uma vacina para estes pacientes poderá, no futuro, aumentar as possibilidades terapêuticas do melanoma

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In a recent vaccination trial assessing the immunogenicity of an NY-ESO-1 (ESO) recombinant protein administered with Montanide and CpG, we have obtained evidence that this vaccine induces specific cytolytic T lymphocytes (CTL) in half of the patients. Most vaccine-induced CTLs were directed against epitopes located in the central part of the protein, between amino acids 81 and 110. This immunodominant region, however, is distinct from another ESO CTL region, 157-165, that is a frequent target of spontaneous CTL responses in A2+ patients bearing ESO tumors. In this study, we have investigated the CTL responses to ESO 157-165 in A2+ patients vaccinated with the recombinant protein. Our data indicate that after vaccination with the protein, CTL responses to ESO 157-165 are induced in some, but not all, A2+ patients. ESO 157-165-specific CTLs induced by vaccination with the ESO protein were functionally heterogeneous in terms of tumor recognition and often displayed decreased tumor reactivity as compared with ESO 157-165-specific CTLs isolated from patients with spontaneous immune responses to ESO. Remarkably, protein-induced CTLs used T-cell receptors similar to those previously isolated from patients vaccinated with synthetic ESO peptides (Vbeta4.1) and distinct from those used by highly tumor-reactive CTLs isolated from patients with spontaneous immune responses (Vbeta1.1, Vbeta8.1, and Vbeta13.1). Together, these results demonstrate that vaccination with the ESO protein elicits a repertoire of ESO 157-165-specific CTLs bearing T-cell receptors that are structurally distinct from those of CTLs found in spontaneous immune responses to the antigen and that are heterogeneous in terms of tumor reactivity, being often poorly tumor reactive.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite advances in the diagnosisand treatment of head and neck cancer,survival rates have not improvedover recent years. New therapeuticstrategies, including immunotherapy,are the subject of extensive research.In several types of tumors, the presenceof tumor infiltrating lymphocytes(TILs), notably CD8+ T cellsand dendritic cells, has been correlatedwith improved prognosis. Moreover,some T cells among TILs havebeen shown to kill tumor cells in vitroupon recognition of tumor-associatedantigens. Tumor associated antigensare expressed in a significant proportionof squamous cell carcinoma ofthe head and neck and apparently mayplay a role in the regulation of cancercell growth notably by inhibition ofp53 protein function in some cancers.The MAGE family CT antigens couldtherefore potentially be used as definedtargets for immunotherapy andtheir study bring new insight in tumorgrowth regulation mechanisms. Between1995 - 2005 54 patients weretreated surgically in our institution forsquamous cell carcinoma of the oralcavity. Patient and clinical data wasobtained from patient files and collectedinto a computerized database.For each patient, paraffin embeddedtumor specimens were retrieved andexpression of MAGE CT antigens,p53, NY-OESO-1 were analyzed byimmunohistochemistry. Results werethen correlated with histopathologicalparameter such as tumor depth,front invasion according to Bryne andboth, local control and disease freesurvival. MAGE-A was expressed in52% of patients. NY-ESO-1 and p53expression was found in 7% and 52%cases respectively. A higher tumordepth was significantly correlatedwith expression of MAGE-Aproteins(p = 0.03). No significant correlationcould be made between the expressionof both p53 andNY-OESO-1 andhistopathological parameters. Expressionof tumor-associated antigendid not seem to impact significantlyon patient prognosis. As does thedemonstration of p53 function inhibitionby CT antigens of MAGE family,our results suggest, that tumor associatedantigens may be implicated in tumorprogression mechanisms. Thishypothesis need further investigationto clarify the relationship betweenhost immune response and local tumorbiology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have shown previously that HLA-A*0201 melanoma patients can frequently develop a CTL response to the cancer testis antigen NY-ESO-1. In the present study, we have analyzed in detail the relative antigenicity and in vitro immunogenicity of natural and modified NY-ESO-1 peptide sequences. The results of this analysis revealed that, although suboptimal for binding to the HLA-A*0201 molecule, peptide NY-ESO-1 157-165 is, among natural sequences, very efficiently recognized by specific CTL clones derived from three melanoma patients. In contrast, peptides NY-ESO-1 157-167 and NY-ESO-1 155-163, which bind very strongly to HLA-A*0201, are recognized less efficiently. In agreement with previous data, substitution of peptide NY-ESO-1 157-165 COOH-terminal C with various other amino acids resulted in a significantly increased binding to HLA-A*0201 molecules as well as in an increased CTL recognition, although variable at the clonal level. Among natural peptides, NY-ESO-1 157-165 and NY-ESO-1 157-167 exhibited good in vitro immunogenicity, whereas peptide NY-ESO-1 155-163 was poorly immunogenic. The fine specificity of interaction between peptide NY-ESO-1 C165A, HLA-A*0201, and T-cell receptor was analyzed at the molecular level using a series of variant peptides containing single alanine substitutions. The findings reported here have significant implications for the formulation of NY-ESO-1-based vaccines as well as for the monitoring of either natural or vaccine-induced NY-ESO-1-specific CTL responses in cancer patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The tumor antigen NY-ESO-1 is a promising cancer vaccine target. We describe here a novel HLA-B7-restricted NY-ESO-1 epitope, encompassing amino acids 60-72 (APRGPHGGAASGL), which is naturally presented by melanoma cells. The tumor epitope bound to HLA-B7 by bulging outward from the peptide-binding cleft. This bulged epitope was not an impediment to T-cell recognition, however, because four of six HLA-B7(+) melanoma patients vaccinated with NY-ESO-1 ISCOMATRIX vaccine generated a potent T-cell response to this determinant. Moreover, the response to this epitope was immunodominant in three of these patients and, unlike the T-cell responses to bulged HLA class I viral epitopes, the responding T cells possessed a remarkably broad TCR repertoire. Interestingly, HLA-B7(+) melanoma patients who did not receive the NY-ESO-1 ISCOMATRIX vaccine rarely generated a spontaneous T-cell response to this cryptic epitope, suggesting a lack of priming of such T cells in the natural anti-NY-ESO-1 response, which may be corrected by vaccination. Together, our results reveal several surprising aspects of antitumor immunity and have implications for cancer vaccine design.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract: Purpose: NY-ESO-1 (ESO), a tumor-specific antigen of the cancer/testis group, is presently viewed as an important model antigen for the development of generic anticancer vaccines. The ESO119-143 region is immunodominant following immunization with a recombinant ESO vaccine. In this study, we generated DRB1*0101/ESO119-143 tetramers and used them to assess CD4 T-cell responses in vaccinated patients expressing DRB1*0101 (DR1). Experimental Design: We generated tetramers of DRB1*0101 incorporating peptide ESO119-143 using a previously described strategy. We assessed ESO119-143-specific CD4 T cells in peptide-stimulated post-vaccine cultures using the tetramers. We isolated DR1/ESO119-143 tetramer(+) cells by cell sorting and characterized them functionally. We assessed vaccine-induced CD4(+) DR1/ESO119-143 tetramer(+) T cells ex vivo and characterized them phenotypically. Results: Staining of cultures from vaccinated patients with DR1/ESO119-143 tetramers identified vaccine-induced CD4 T cells. Tetramer(+) cells isolated by cell sorting were of T(H)1 type and efficiently recognized full-length ESO. We identified ESO123-137 as the minimal optimal epitope recognized by DR1-restricted ESO-specific CD4 T cells. By assessing DR1/ESO119-143 tetramer(+) cells using T cell receptor (TCR) beta chain variable region (V beta)-specific antibodies, we identified several frequently used V beta. Finally, direct ex vivo staining of patients' CD4 T cells with tetramers allowed the direct quantification and phenotyping of vaccine-induced ESO-specific CD4 T cells. Conclusions: The development of DR1/ESO119-143 tetramers, allowing the direct visualization, isolation, and characterization of ESO-specific CD4 T cells, will be instrumental for the evaluation of spontaneous and vaccine-induced immune responses to this important tumor antigen in DR1-expressing patients

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cancer-testis antigen NY-ESO-1 has been targeted as a tumor-associated antigen by immunotherapeutical strategies, such as cancer vaccines. The prerequisite for a T-cell-based therapy is the induction of T cells capable of recognizing the NY-ESO-1-expressing tumor cells. In this study, we generated human T lymphocytes directed against the immunodominant NY-ESO-1(157-165) epitope known to be naturally presented with HLA-A*0201. We succeeded to isolate autorestricted and allorestricted T lymphocytes with low, intermediate or high avidity TCRs against the NY-ESO-1 peptide. The avidity of the established CTL populations correlated with their capacity of lysing HLA-A2-positive, NY-ESO-1-expressing tumor cell lines derived from different origins, e.g. melanoma and myeloma. The allorestricted NY-ESO-1-specific T lymphocytes displayed TCRs with the highest avidity and best anti-tumor recognition activity. TCRs derived from allorestricted, NY-ESO-1-specific T cells may be useful reagents for redirecting primary T cells by TCR gene transfer and, therefore, may facilitate the development of adoptive transfer regimens based on TCR-transduced T cells for the treatment of NY-ESO-1-expressing hematological malignancies and solid tumors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background. Despite diagnostic and therapeutic advances in head and neck cancer, the 5-year survival of patients with laryngeal cancer has not improved in the last 30 years. Several recent studies indicate that specific targets for immunotherapeutic approaches can be useful in the control of cancer. There is considerable interest in the expression of cancer testis antigens in human cancers since they may serve as the basis for an immunologic approach to therapy. Methods. We evaluated by immunohistochemical analysis the expression of cancer testis antigens MAGE-A4 (57B), MAGE-C1 (CT7-33), MAGE-A1 (MA454), MAGE-A3 (M3H67), MAGE-C2 (CT10.5), NY-ESO-1 (E978), and GAGE (GAGE) in squamous cell carcinoma (SCC) of the larynx. Results. A total of 63 cases (57 men and 6 women) of laryngeal SCC were available for this study. The findings were correlated with the clinical course and laboratory data. Expression of at least 1 cancer testis antigen was detected in 42 of 63 of the laryngeal SCCs (67%). In 34 of 42 of the positive cases (81%) there was simultaneous expression of >= 2 cancer testis antigens. There was significant correlation between antigen expression and advanced tumor stage (stage III/IV) in cases with reactivity to only 1 antibody (p = .01) as well as in the cases with reactivity to >= 2 primary antibodies (>= 2 mAbs, p = .04). There was no association between survival and expression of any of the analyzed antigens. Conclusions. We find a high incidence of cancer testis antigen expression in SCCs of the larynx, which was correlated with advanced clinical stage. Our data indicate that cancer testis antigens could be valuable vaccine targets in laryngeal tumors, especially in those with a worse prognosis. (C) 2010 Wiley Periodicals, Inc. Head Neck 33: 702-707, 2011

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The programmed death 1 (PD-1) receptor is a negative regulator of activated T cells and is up-regulated on exhausted virus-specific CD8(+) T cells in chronically infected mice and humans. Programmed death ligand 1 (PD-L1) is expressed by multiple tumors, and its interaction with PD-1 resulted in tumor escape in experimental models. To investigate the role of PD-1 in impairing spontaneous tumor Ag-specific CD8(+) T cells in melanoma patients, we have examined the effect of PD-1 expression on ex vivo detectable CD8(+) T cells specific to the tumor Ag NY-ESO-1. In contrast to EBV, influenza, or Melan-A/MART-1-specific CD8(+) T cells, NY-ESO-1-specific CD8(+) T cells up-regulated PD-1 expression. PD-1 up-regulation on spontaneous NY-ESO-1-specific CD8(+) T cells occurs along with T cell activation and is not directly associated with an inability to produce cytokines. Importantly, blockade of the PD-1/PD-L1 pathway in combination with prolonged Ag stimulation with PD-L1(+) APCs or melanoma cells augmented the number of cytokine-producing, proliferating, and total NY-ESO-1-specific CD8(+) T cells. Collectively, our findings support the role of PD-1 as a regulator of NY-ESO-1-specific CD8(+) T cell expansion in the context of chronic Ag stimulation. They further support the use of PD-1/PD-L1 pathway blockade in cancer patients to partially restore NY-ESO-1-specific CD8(+) T cell numbers and functions, increasing the likelihood of tumor regression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Immunodominance has been well-demonstrated in many antiviral and antibacterial systems, but much less so in the setting of immune responses against cancer. Tumor Ag-specific CD8+ T cells keep cancer cells in check via immunosurveillance and shape tumor development through immunoediting. Because most tumor Ags are self Ags, the breadth and depth of antitumor immune responses have not been well-appreciated. To design and develop antitumor vaccines, it is important to understand the immunodominance hierarchy and its underlying mechanisms, and to identify the most immunodominant tumor Ag-specific T cells. We have comprehensively analyzed spontaneous cellular immune responses of one individual and show that multiple tumor Ags are targeted by the patient's immune system, especially the "cancer-testis" tumor Ag NY-ESO-1. The pattern of anti-NY-ESO-1 T cell responses in this patient closely resembles the classical broad yet hierarchical antiviral immunity and was confirmed in a second subject.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

MHC-peptide tetramers have become essential tools for T-cell analysis, but few MHC class II tetramers incorporating peptides from human tumor and self-antigens have been developed. Among limiting factors are the high polymorphism of class II molecules and the low binding capacity of the peptides. Here, we report the generation of molecularly defined tetramers using His-tagged peptides and isolation of folded MHC/peptide monomers by affinity purification. Using this strategy we generated tetramers of DR52b (DRB3*0202), an allele expressed by approximately half of Caucasians, incorporating an epitope from the tumor antigen NY-ESO-1. Molecularly defined tetramers avidly and stably bound to specific CD4(+) T cells with negligible background on nonspecific cells. Using molecularly defined DR52b/NY-ESO-1 tetramers, we could demonstrate that in DR52b(+) cancer patients immunized with a recombinant NY-ESO-1 vaccine, vaccine-induced tetramer-positive cells represent ex vivo in average 1:5,000 circulating CD4(+) T cells, include central and transitional memory polyfunctional populations, and do not include CD4(+)CD25(+)CD127(-) regulatory T cells. This approach may significantly accelerate the development of reliable MHC class II tetramers to monitor immune responses to tumor and self-antigens.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Immunogenicity of a long 20-mer NY-ESO-1f peptide vaccine was evaluated in a lung cancer patient TK-f01, immunized with the peptide with Picibanil OK-432 and Montanide ISA-51. We showed that internalization of the peptide was necessary to present CD8 T-cell epitopes on APC, contrasting with the direct presentation of the short epitope. CD8 T-cell responses restricted to all five HLA class I alleles were induced in the patient after the peptide vaccination. Clonal analysis showed that B*35:01 and B*52:01-restricted CD8 T-cell responses were the two dominant responses. The minimal epitopes recognized by A*24:02, B*35:01, B*52:01 and C*12:02-restricted CD8 T-cell clones were defined and peptide/HLA tetramers were produced. NY-ESO-1 91-101 on A*24:02, NY-ESO-1 92-102 on B*35:01, NY-ESO-1 96-104 on B*52:01 and NY-ESO-1 96-104 on C*12:02 were new epitopes first defined in this study. Identification of the A*24:02 epitope is highly relevant for studying the Japanese population because of its high expression frequency (60%). High affinity CD8 T-cells recognizing tumor cells naturally expressing the epitopes and matched HLA were induced at a significant level. The findings suggest the usefulness of a long 20-mer NY-ESO-1f peptide harboring multiple CD8 T-cell epitopes as an NY-ESO-1 vaccine. Characterization of CD8 T-cell responses in immunomonitoring using peptide/HLA tetramers revealed that multiple CD8 T-cell responses comprised the dominant response.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spontaneous CD4(+) T-cell responses to the tumor-specific antigen NY-ESO-1 (ESO) are frequently found in patients with epithelial ovarian cancer (EOC). If these responses are of effector or/and Treg type, however, has remained unclear. Here, we have used functional approaches together with recently developed MHC class II/ESO tetramers to assess the frequency, phenotype and function of ESO-specific cells in circulating lymphocytes from EOC patients. We found that circulating ESO-specific CD4(+) T cells in EOC patients with spontaneous immune responses to the antigen are prevalently T(H)1 type cells secreting IFN-γ but no IL-17 or IL-10 and are not suppressive. We detected tetramer(+) cells ex vivo, at an average frequency of 1:25,000 memory cells, that is, significantly lower than in patients immunized with an ESO vaccine. ESO tetramer(+) cells were mostly effector memory cells at advanced stages of differentiation and were not detected in circulating CD25(+)FOXP3(+)Treg. Thus, spontaneous CD4(+) T-cell responses to ESO in cancer patients are prevalently of T(H)1 type and not Treg. Their relatively low frequency and advanced differentiation stage, however, may limit their efficacy, that may be boosted by immunogenic ESO vaccines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Immunogenicity of a long 20-mer NY-ESO-1f peptide vaccine was evaluated in a lung cancer patient TK-f01, immunized with the peptide with Picibanil OK-432 and Montanide ISA-51. We showed that internalization of the peptide was necessary to present CD8 T-cell epitopes on APC, contrasting with the direct presentation of the short epitope. CD8 T-cell responses restricted to all five HLA class I alleles were induced in the patient after the peptide vaccination. Clonal analysis showed that B*35:01 and B*52:01-restricted CD8 T-cell responses were the two dominant responses. The minimal epitopes recognized by A*24:02, B*35:01, B*52:01 and C*12:02-restricted CD8 T-cell clones were defined and peptide/HLA tetramers were produced. NY-ESO-1 91-101 on A*24:02, NY-ESO-1 92-102 on B*35:01, NY-ESO-1 96-104 on B*52:01 and NY-ESO-1 96-104 on C*12:02 were new epitopes first defined in this study. Identification of the A*24:02 epitope is highly relevant for studying the Japanese population because of its high expression frequency (60%). High affinity CD8 T-cells recognizing tumor cells naturally expressing the epitopes and matched HLA were induced at a significant level. The findings suggest the usefulness of a long 20-mer NY-ESO-1f peptide harboring multiple CD8 T-cell epitopes as an NY-ESO-1 vaccine. Characterization of CD8 T-cell responses in immunomonitoring using peptide/HLA tetramers revealed that multiple CD8 T-cell responses comprised the dominant response.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An attractive treatment of cancer consists in inducing tumor-eradicating CD8(+) CTL specific for tumor-associated Ags, such as NY-ESO-1 (ESO), a strongly immunogenic cancer germ line gene-encoded tumor-associated Ag, widely expressed on diverse tumors. To establish optimal priming of ESO-specific CTL and to define critical vaccine variables and mechanisms, we used HLA-A2/DR1 H-2(-/-) transgenic mice and sequential immunization with immunodominant DR1- and A2-restricted ESO peptides. Immunization of mice first with the DR1-restricted ESO(123-137) peptide and subsequently with mature dendritic cells (DCs) presenting this and the A2-restriced ESO(157-165) epitope generated abundant, circulating, high-avidity primary and memory CD8(+) T cells that efficiently killed A2/ESO(157-165)(+) tumor cells. This prime boost regimen was superior to other vaccine regimes and required strong Th1 cell responses, copresentation of MHC class I and MHC class II peptides by the same DC, and resulted in upregulation of sphingosine 1-phosphate receptor 1, and thus egress of freshly primed CD8(+) T cells from the draining lymph nodes into circulation. This well-defined system allowed detailed mechanistic analysis, which revealed that 1) the Th1 cytokines IFN-gamma and IL-2 played key roles in CTL priming, namely by upregulating on naive CD8(+) T cells the chemokine receptor CCR5; 2) the inflammatory chemokines CCL4 (MIP-1beta) and CCL3 (MIP-1alpha) chemoattracted primed CD4(+) T cells to mature DCs and activated, naive CD8(+) T cells to DC-CD4 conjugates, respectively; and 3) blockade of these chemokines or their common receptor CCR5 ablated priming of CD8(+) T cells and upregulation of sphingosine 1-phosphate receptor 1. These findings provide new opportunities for improving T cell cancer vaccines.