972 resultados para NONRELATIVISTIC LIMIT


Relevância:

70.00% 70.00%

Publicador:

Resumo:

We construct a nonrelativistic wave equation for spinning particles in the noncommutative space (in a sense, a theta modification of the Pauli equation). To this end, we consider the nonrelativistic limit of the theta-modified Dirac equation. To complete the consideration, we present a pseudoclassical model (a la Berezin-Marinov) for the corresponding nonrelativistic particle in the noncommutative space. To justify the latter model, we demonstrate that its quantization leads to the theta-modified Pauli equation. We extract theta-modified interaction between a nonrelativistic spin and a magnetic field from such a Pauli equation and construct a theta modification of the Heisenberg model for two coupled spins placed in an external magnetic field. In the framework of such a model, we calculate the probability transition between two orthogonal Einstein-Podolsky-Rosen states for a pair of spins in an oscillatory magnetic field and show that some of such transitions, which are forbidden in the commutative space, are possible due to the space noncommutativity. This allows us to estimate an upper bound on the noncommutativity parameter.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We consider the formal non-relativistic limit (nrl) of the : phi(4):(s+1) relativistic quantum field theory (rqft), where s is the space dimension. Following the work of R. Jackiw [R. Jackiw, in: A. Ali, P. Hood-bhoy (Eds.), Beg Memorial Volume, World Scientific, Singapore, 1991], we show that, for s = 2 and a given value of the ultraviolet cutoff K, there are two ways to perform the nrl: (i) fixing the renormalized mass m(2) equal to the bare mass m(0)(2); (ii) keeping the renormalized mass fixed and different from the bare mass mo. In the (infinite-volume) two-particle sector the scattering amplitude tends to zero as K -> infinity in case (i) and, in case (ii), there is a bound state, indicating that the interaction potential is attractive. As a consequence, stability of matter fails for our boson system. We discuss why both alternatives do not reproduce the low-energy behaviour of the full rqft. The singular nature of the nrl is also nicely illustrated for s = 1 by a rigorous stability/instability result of a different nature. (C) 2007 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The gravitational properties of a straight cosmic string are studied in the linear approximation of higher-derivative gravity. These properties are shown to be very different from those found using linearized Einstein gravity: there exists a short range gravitational (anti-gravitational) force in the nonrelativistic limit; in addition, the derection angle of a light ray moving in a plane orthogonal to the string depends on the impact parameter.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The problem of a fermion subject to a general mixing of vector and scalar potentials in a two-dimensional world is mapped into a Sturm-Liouville problem. Isolated bounded solutions are also searched. For the specific case of an inversely linear potential, which gives rise to an effective Kratzer potential in the Sturm-Liouville problem, exact bounded solutions are found in closed form. The case of a pure scalar potential with their isolated zero-energy solutions, already analyzed in a previous work, is obtained as a particular case. The behavior of the upper and lower components of the Dirac spinor is discussed in detail and some unusual results are revealed. The nonrelativistic limit of our results adds a new support to the conclusion that even-parity solutions to the nonrelativistic one-dimensional hydrogen atom do not exist. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The problem of a spinless particle subject to a general mixing of vector and scalar inversely linear potentials in a two-dimensional world is analyzed. Exact bounded solutions are found in closed form by imposing boundary conditions on the eigenfunctions which ensure that the effective Hamiltonian is Hermitian for all the points of the space. The nonrelativistic limit of our results adds a new support to the conclusion that even-parity solutions to the nonrelativistic one-dimensional hydrogen atom do not exist. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Various Green functions of the Dirac equation with a magnetic-solenoid field (the superposition of the Aharonov-Bohm field and a collinear uniform magnetic field) are constructed and studied. The problem is considered in 2+1 and 3+1 dimensions for the natural extension of the Dirac operator (the extension obtained from the solenoid regularization). Representations of the Green functions as proper time integrals are derived. The nonrelativistic limit is considered. For the sake of completeness the Green functions of the Klein-Gordon particles are constructed as well. (C) 2004 American Institute of Physics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A generalized relativistic harmonic oscillator for spin 1/2 particles is studied. The Dirac Hamiltonian contains a scalar S and a vector V quadratic potentials in the radial coordinate, as well as a tensor potential U linear in r. Setting either or both combinations Σ=5+V and δ=V-S to zero, analytical solutions for bound states of the corresponding Dirac equations are found. The eigenenergies and wave functions are presented and particular cases are discussed, devoting a special attention to the nonrelativistic limit and the case Σ=0, for which pseudospin symmetry is exact. We also show that the case U=δ=0 is the most natural generalization of the nonrelativistic harmonic oscillator. The radial node structure of the Dirac spinor is studied for several combinations of harmonic-oscillator potentials, and that study allows us to explain why nuclear intruder levels cannot be described in the framework of the relativistic harmonic oscillator in the pseudospin limit.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The gravitational properties of a straight cosmic string are studied in the linear approximation of higher-derivative gravity. These properties are shown to be very different from those found using linearized Einstein gravity: there exists a short range gravitational (anti-gravitational) force in the nonrelativistic limit; in addition, the deflection angle of a light ray moving in a plane orthogonal to the string depends on the impact parameter. © 2008 World Scientific Publishing Company.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work we investigate a possible magnetic moment generation for massive neutral particles with spins-1 and -2 coupled non-minimally, in a specific way, to an external electromagnetic field. It is found that, in the nonrelativistic limit, these particles present g = 1. This result, worked out in the framework of Relativistic Quantum Mechanics, seems to suggest that g = 1 for all massive and neutral particles of any spin ≤ 2. We also compare with the results obtained for massive charged particles of spins-1 and -2, in the same regime (nonrelativistic), in order to investigate the role played by the spin separetely from the charge. Copyright © owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

No presente trabalho foi considerado um campo escalar real não massivo em um espaço-tempo bidimensional, satisfazendo à condição de fronteira Dirichlet ou Neumann na posição instantânea de uma fronteira em movimento. Para uma lei de movimento relativística, foi mostrado que as condiçõoes de fronteira Dirichlet e Neumann produzem a mesma força de radiação sobre um espelho em movimento quando o estado inicial do campo é invariante sobre translações temporais. Obtemos as fórmulas exatas para a densidade de energia do campo e da força de radiação na fronteira para os estados de vácuo, coerente e comprimido. No limite não-relativistico, os resultados obtidos coincidem com os encontrados na literatura. Também foi investigado o campo dentro de uma cavidade oscilante. Considerando as condiçõoes de fronteira Neumann e Dirichlet, escreveu-se a fórmulas exata para a densidade de energia dentro de uma cavidade não-estática, para um estado inicial arbitrário do campo. Tomando como base a equação de Moore, nós calculamos recursivamente a densidade de energia e investigamos a evolução temporal da densidade de energia para o estado coerente do campo.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The possibility of generalizing gravity in 2+1 dimensions to include higher-derivative terms, thereby allowing for a dynamical theory, opens up a variety of new interesting questions. This is in great contrast with pure Einstein gravity which is a generally covariant theory that has no degrees of freedom - a peculiarity that, in a sense, renders it a little insipid and odorless. The research on gravity of particles moving in a plane, that is, living in flatland, within the context of higher-derivative gravity, leads to novel and interesting effects. For instance, the generation of gravity, antigravity, and gravitational shielding by the interaction of massive scalar bosons via a graviton exchange. In addition, the gravitational deffection angle of a photon, unlike that of Einstein gravity, is dependent of the impact parameter. On the other hand, the great drawback to using linearized general relativity for describing a gravitating string is that this description leads to some unphysical results such as: (i) lack of a gravity force in the nonrelativistic limit; (ii) gravitational deffection independent of the impact parameter. Interesting enough, the effective cure for these pathologies is the replacement of linearized gravity by linearized higher-derivative gravity. We address these issues here

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We show that the non-embedded eigenvalues of the Dirac operator on the real line with complex mass and non-Hermitian potential V lie in the disjoint union of two disks, provided that the L1-norm of V is bounded from above by the speed of light times the reduced Planck constant. The result is sharp; moreover, the analogous sharp result for the Schrödinger operator, originally proved by Abramov, Aslanyan and Davies, emerges in the nonrelativistic limit. For massless Dirac operators, the condition on V implies the absence of non-real eigenvalues. Our results are further generalized to potentials with slower decay at infinity. As an application, we determine bounds on resonances and embedded eigenvalues of Dirac operators with Hermitian dilation-analytic potentials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The existence of a classical limit describing the interacting particles in a second-quantized theory of identical particles with bosonic symmetry is proved. This limit exists in addition to the previously established classical limit with a classical field behavior, showing that the limit h -> 0 of the theory is not unique. An analogous result is valid for a free massive scalar field: two distinct classical limits are proved to exist, describing a system of particles or a classical field. The introduction of local operators in order to represent kinematical properties of interest is shown to break the permutation symmetry under some localizability conditions, allowing the study of individual particle properties.