925 resultados para NON-VIRAL GENE DELIVERY


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The low efficiency of gene transfer is a recurrent problem in DNA vaccine development and gene therapy studies using non-viral vectors such as plasmid DNA (pDNA). This is mainly due to the fact that during their traffic to the target cell's nuclei, plasmid vectors must overcome a series of physical, enzymatic and diffusional barriers. The main objective of this work is the development of recombinant proteins specifically designed for pDNA delivery, which take advantage of molecular motors like dynein, for the transport of cargos from the periphery to the centrosome of mammalian cells. A DNA binding sequence was fused to the N-terminus of the recombinant human dynein light chain LC8. Expression studies indicated that the fusion protein was correctly expressed in soluble form using E. coli BL21(DE3) strain. As expected, gel permeation assays found the purified protein mainly present as dimers, the functional oligomeric state of LC8. Gel retardation assays and atomic force microscopy proved the ability of the fusion protein to interact and condense pDNA. Zeta potential measurements indicated that LC8 with DNA binding domain (LD4) has an enhanced capacity to interact and condense pDNA, generating positively charged complexes. Transfection of cultured HeLa cells confirmed the ability of the LD4 to facilitate pDNA uptake and indicate the involvement of the retrograde transport in the intracellular trafficking of pDNA: LD4 complexes. Finally, cytotoxicity studies demonstrated a very low toxicity of the fusion protein vector, indicating the potential for in vivo applications. The study presented here is part of an effort to develop new modular shuttle proteins able to take advantage of strategies used by viruses to infect mammalian cells, aiming to provide new tools for gene therapy and DNA vaccination studies. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The design and synthesis of safe efficient non-viral vectors for gene delivery has attracted significant attention in recent years due primarily to the severe side-effect profile reported with the use of their viral counterparts. Previous experiments have revealed that the strong interaction between the carriers and nucleic acid may well hinder the release of the gene from the complex in the cytosol adversely affecting transfection efficiency. However, incorporating reducible disulfide bonds within the delivery systems themselves which are then cleaved in the glutathione-rich intracellular environment may help in solving this puzzle. This review focuses on recent development of these reducible carriers. The biological rationale and approaches to the synthesis of reducible vectors are discussed in detail. The in vitro and in vivo evaluations of reducible carriers are also summarized and it is evident that they offer a promising approach in non-viral gene delivery system design.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The design of a non-viral gene delivery vehicle capable of delivering and releasing a functional nucleic acid cargo intracellularly remains a formidable challenge. For systemic gene therapy to be successful a delivery vehicle is required that protects the nucleic acid cargo from enzymatic degradation, extravasates from the vasculature, traverses the cell membrane, disrupts the endosomal vesicles and unloads the cargo at its destination site, namely the nucleus for the purposes of gene delivery. This manuscript reports the extensive investigation of a novel amphipathic peptide composed of repeating RALA units capable of overcoming the biological barriers to gene delivery both in vitro and in vivo. Our data demonstrates the spontaneous self-assembly of cationic DNA-loaded nanoparticles when the peptide is complexed with pDNA. Nanoparticles were < 100 nm, were stable in the presence of serum and were fusogenic in nature, with increased peptide α-helicity at a lower pH. Nanoparticles proved to be non-cytotoxic, readily traversed the plasma membrane of both cancer and fibroblast cell lines and elicited reporter-gene expression following intravenous delivery in vivo. The results of this study indicate that RALA presents an exciting delivery platform for the systemic delivery of nucleic acid therapeutics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cell-specific delivery of polynucleic acids (e.g., DNA, RNA), gene therapy, has the potential to treat various diseases. In this chapter we discuss the use of organic electronic materials as non-viral gene delivery vectors and the great potential for electrochemically triggered gene delivery. We highlight some examples in this chapter based on fullerenes (bucky balls and carbon nanotubes), graphenes and electroactive polymers, particularly those that include experiments in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cationic polysaccharide chitosan has been widely used for non-viral transfection in vitro and in vivo and has many advantages over other polycations. Chitosan is biocompatible and biodegradable and protects DNA against DNase degradation. However following administration the ChitosanDNA polyplexes must overcome a series of barriers before DNA is delivered to the cell nucleus. This paper describes the most important parameters involved in the chitosan-DNA interaction and their effects of on the condensation, shape, size and protection of DNA. Strategies developed for chitosanDNA polyplexes to avoid non-specific interaction with blood components and to overcome intracellular obstacles as the crossing of die cell membrane, endosomal escape and nuclear import are presented. © 2006 American Chemical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cationic lipids have been used in the development of non-viral gene delivery systems as lipoplexes. Stearylamine, a cationic lipid that presents a primary amine group when in solution, is able to compact genetic material by electrostatic interactions. In dispersed systems such as nanoemulsions this lipid anchors on the oil/water interface confering a positive charge to them. The aim of this work was to evaluate factors that influence DNA compaction in cationic nanoemulsions containing stearylamine. The influence of the stearylamine incorporation phase (water or oil), time of complexation, and different incubation temperatures were studied. The complexation rate was assessed by electrophoresis migration on agarose gel 0.7%, and nanoemulsion and lipoplex characterization was done by Dynamic Light Scattering (DLS). The results demonstrate that the best DNA compaction process occurs after 120 min of complexation, at low temperature (4 ± 1 °C), and after incorporation of the cationic lipid into the aqueous phase. Although the zeta potential of lipoplexes was lower than the results found for basic nanoemulsions, the granulometry did not change. Moreover, it was demonstrated that lipoplexes are suitable vehicles for gene delivery. © 2012 by the authors; licensee MDPI, Basel, Switzerland.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gene transfer using electroporation is an essential method for the study of developmental biology, especially to understand the internal control of degeneration and apoptosis of the muscle cells that occurs earlier and quicker than the usual degeneration process occurring by aging. Such experimental studies may have a role in developing new strategies for treating patients suffering from inherited primary myopathies such as Duchenne muscular dystrophy (DMD). The present study was designed to evaluate the feasibility of electroporation mediated transfer of reporter genes to the diaphragm in vivo. This is the first report of gene transfer of naked plasmid DNA into the diaphragm muscle in vivo using electroporation. Our results showed that in vivo gene transfer of naked plasmid DNA into the diaphragm muscle using electroporation is feasible.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background. Low back pain is an increasing global health problem, which is associated with intervertebral disc (IVD) damage and degeneration. Major changes occur in the nucleus pulposus (NP), with the degradation of the extracellular matrix (ECM).1 Further studies showed that growth factors from transforming growth factor β (TGFβ) and bone morphogenic proteins (BMP) family may induce chondrogenic differentiation of mesenchymal stem cells (MSC).2 Focusing on non-viral gene therapies and their possible translation into the clinics, we investigated if GDF6 (syn. BMP13 or CDMP2) can induce regeneration of degraded NP. We hypothesized that IVD transfected with plasmid over-expressing GDF6 also up-regulates other NP- and chondrogenic cell markers and enhances ECM deposition. Methods. Bovine nucleus pulposus (bNPC) and annulus fibrosus cells (bAFC) were harvested from bovine coccygeal IVD. Primary cells were then electroporized with plasmid GDF6 (Origene, vector RG211366) by optimizing parameters using the Neon Transfection system (Life Technologies, Basel). After transfection, cells were cultured in 2D monolayer or 3D alginate beads for 7, 14 or 21 days. Transfection efficiency of pGDF6 was analyzed by immunohistochemistry and fluorescent microscopy. Cell phenotype was quantified by real-time RT-PCR. To test a non-viral gene therapy applied directly to 3D whole organ culture, coccygeal bovine IVDs were harvested as previously described. Bovine IVDs were transfected by injection of plasmid GDF6 into the center. Electroporation was performed with ECM830 Square Wave Electroporation System (Harvard Apparatus, MA) using 2-needle array electrode or tweezertrodes. 72 h after tranfection discs were fixed and cryosectioned and analyzed by immunofluorescence against GDF6. Results. RT-PCR and immunohistochemistry confirmed up-regulation of GFP and GDF6 in the primary bNPC/bAFC culture. The GFP-tagged GDF6 protein, however, was not visible, possibly due to failure of dimer formation as a result of fusion structure. Organ IVD culture transfection revealed GDF6 positive staining in the center of the disc using 2-needle array electrode. Results from tweezertrodes did not show any GDF6 positive cells. Conclusion. Non-viral transfection is an appealing approach for gene therapy as it fulfills the translational safety aspects of transiency and lacks the toxic effects of viral transduction. We identified novel parameters to successfully transfect primary bovine IVD cells. For transfection of whole IVD explants electroporation parameters need to be further optimized. Acknowledgements. This project was funded by the Lindenhof Foundation (Funds “Research & Teaching”) Project no. 13-02-F. The imaging part of this study was performed with the facility of the Microscopy Imaging Center (MIC), University of Bern. References. Roughly PJ (2004): Spine (Phila), 29:2691-2699 Clarke LE, McConell JC, Sherratt MJ, Derby B, Richardson SM, Hoyland JA (2014), Arthritis Research & Therapy, 16:R67

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human gene therapy has faced many setbacks due to the immunogenicity and oncogenity of viruses. Safe and efficient alternative gene delivery vehicles are needed to implement gene therapy in clinical practice. Polymeric vectors are an attractive option due to their availability, simple chemistry, and low toxicity and immunogenicity. Our group has previously reported biodegradable polyethylenimines (PEI) that show high transfection efficiency and low toxicity by cross-linking 800 Da PEI with diacrylate cross-linkers using Michael addition. However, the synthesis was difficult to control, inconsistent, and resulted in polymers with a narrow range of molecular weights. In the present work, we utilized a heterogenous PVP(Fe(III)) catalyst to provide a more controllable PEI crosslinking reaction and wider range of biodegradable PEIs. The biodegradable PEIs reported here have molecular weights ranging from 1.2 kDa to 48 kDa, are nontoxic in MDA-MB-231 cells, and show low toxicity in HeLa cells. At their respective optimal polymer:DNA ratios, these biodegradable PEIs demonstrated about 2-5-fold higher transfection efficiency and 2-7-fold higher cellular uptake, compared unmodified 25 kDa PEI. The biodegradable PEIs show similar DNA condensation properties as unmodified PEI but more readily unpackage DNA, based on ethidium bromide exclusion and heparan sulfate competitive displacement assays, which could contribute to their improved transfection efficiency. Overall, the synthesis reported here provides a more robust, controlled reaction to produce cross-linked biodegradable PEIs that show enhanced gene delivery, low toxicity, and high cellular uptake and can potentially be used for future in vivo studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tese de Doutoramento, Ciências Biomédicas, Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, 2016

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação de Mestrado, Ciências Biomédicas, Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, 2016

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Question: Low back pain is an increasing global health problem, which is associated with intervertebral disc (IVD) damage and de- generation. Major changes occur in the nucleus pulposus (NP), with the degradation of the extracellular matrix (ECM) [1]. Further studies showed that growth factors from the transforming growth factor (TGF) and bone morphogenic proteins (BMP) family may induce chondrogenic differentiation of mesenchymal stem cells (MSC) [2]. Focusing on non-viral gene therapies and their possible translation into the clinics, we investigated if GDF6 (syn. BMP13 or CDMP2) can induce regeneration of degraded NP. We hypothesized that IVD transfected with plasmid over-expressing GDF6 also up-regulates other NP- and chondrogenic cell markers and enhances ECM deposition. Methods: Bovine IVD cells were isolated by pronase/collagenase II overnight digestion. After monolayer expansion up to passage 3, cells were transfected with the plasmid pGDF6 (RG211366, Origene, SF) or with green fluorescence protein (GFP) control using the NeonÒ transfection system (Invitrogen, Basel), both equipped with a Cy- tomegalovirus (CMV) promotor to induce over-expression. We tested a range of yet unpublished parameters for each of the primary disc cells to optimize efficiency. To test a non-viral gene therapy applied directly to 3D whole organ culture, bovine IVDs were harvested from fresh tails obtained from the abattoir within 5 h post-mortem [3]. Discs were then pre-incubated for 24 h in high glucose Dulbecco’s Modified Eagle Medium and 5 % fetal calf serum. Each disc was transfected by injection of 5 lg of plasmid GDF6 (Origene, RG211366) into the center by 25G needle and using Hamilton sy- ringe. Electroporation was performed using 2-needle array electrode or tweezertrodes; 8 pulses at 200mv/cm with an interval of 10 ms were applied using ECM830 Square Wave Electroporation System (Harvard Apparatus, MA) (Fig. 1). After transfection discs were cultured for 72 h to allow expression of GFP or GDF6. Discs were then fixed, cryosectioned and analysed by immunofluorescence against GDF6. Results: We successfully transfected bovine NP and AF cells in monolayer culture with the two plasmids using a 1,400 V, 20 ms and 2 pulses with a *25 % efficiency using 0.15 M cells and 3 lg DNA (Fig. 1). Organ IVD culture transfection revealed GFP6 positive staining in the centre of the disc using 2-needle array electrode. Results from tweezertrodes did not show any GFP posi- tive cells. Conclusions: We identified novel parameters to successfully transfect primary bovine IVD cells. For transfection of whole IVD explants electroporation parameters need to be further optimized. Acknowledgments: This study was supported by the Lindenhof Foundation ‘‘Forschung und Lehre’’ (Project no. 13-02-F). References 1. Roughly PJ (2004) Spine (Phila) 29:2691–2699 2. 3. Clarke LE, McConell JC, Sherratt MJ, Derby B, Richardson SM, Hoyland JA (2014) Arthritis Res Ther 16:R67 Chan SC, Gantenbein-Ritter B (2012) J Vis Exp 60(60):e3490

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Non-viral gene delivery vectors are emerging as a safer alternative to viral vectors. Among natural polymers, chitosan (Ch) is the most studied one, and low molecular weight Ch, specifically, presents a wide range of advantages for non-viral pDNA delivery. It is crucial to determine the best process for the formation of Low Molecular Weight Chitosan (LMWC)-pDNA complexes and to characterize their physicochemical properties to better understand their behavior once the polyplexes are administered. The transfection efficiency of Ch based polyplexes is relatively low. Therefore, it is essential to understand all the transfection process, including the cellular uptake, endosomal escape and nuclear import, together with the parameters involved in the process to improve the design and development of the non-viral vectors. The aim of this review is to describe the formation and characterization of LMWC based polyplexes, the in vitro transfection process and finally, the in vivo applications of LMWC based polyplexes for gene therapy purposes.