999 resultados para NLS-like equations
Resumo:
This thesis proves certain results concerning an important question in non-equilibrium quantum statistical mechanics which is the derivation of effective evolution equations approximating the dynamics of a system of large number of bosons initially at equilibrium (ground state at very low temperatures). The dynamics of such systems are governed by the time-dependent linear many-body Schroedinger equation from which it is typically difficult to extract useful information due to the number of particles being large. We will study quantitatively (i.e. with explicit bounds on the error) how a suitable one particle non-linear Schroedinger equation arises in the mean field limit as number of particles N → ∞ and how the appropriate corrections to the mean field will provide better approximations of the exact dynamics. In the first part of this thesis we consider the evolution of N bosons, where N is large, with two-body interactions of the form N³ᵝv(Nᵝ⋅), 0≤β≤1. The parameter β measures the strength and the range of interactions. We compare the exact evolution with an approximation which considers the evolution of a mean field coupled with an appropriate description of pair excitations, see [18,19] by Grillakis-Machedon-Margetis. We extend the results for 0 ≤ β < 1/3 in [19, 20] to the case of β < 1/2 and obtain an error bound of the form p(t)/Nᵅ, where α>0 and p(t) is a polynomial, which implies a specific rate of convergence as N → ∞. In the second part, utilizing estimates of the type discussed in the first part, we compare the exact evolution with the mean field approximation in the sense of marginals. We prove that the exact evolution is close to the approximate in trace norm for times of the order o(1)√N compared to log(o(1)N) as obtained in Chen-Lee-Schlein [6] for the Hartree evolution. Estimates of similar type are obtained for stronger interactions as well.
Resumo:
In this Note it is worked out a new set of Laplace-Like equations for quaternions through Riemann-Cauchy hypercomplex relations otained earlier [1]. As in the theory of functions of a complex variable, it is expected that this new set of Laplace-Like equations might be applied to a large number of Physical problems, providing new insights in the Classical Fields Theory.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Neste trabalho investigamos soluções solitônicas em modelos de Kaluza-Klein com um número arbitrário de espaços internos toroidais, que descrevem o campo gravitacional de um objeto massivo compacto. Cada toro di-dimensional possui um fator de escala independente Ci, i = 1, ..., N, que é caracterizado pelo parâmetro ᵞi. Destacamos a solução fisicamente interessante correspondente à massa puntual. Para a solução geral obtemos equações de estado nos espaços externo e interno. Estas equações demonstram que a massa pontual solitônica possui equações de estado tipo poeira em todos os espaços. Obtemos também os parâmetros pósnewtonianos que nos possibilitam encontrar as fórmulas da precessão do periélio, do desvio da luz e do atraso no tempo de ecos de radar. Além disso, os experimentos gravitacionais levam a uma forte limitação nos parâmetros do modelo: T = ƩNi=1 diYi = −(2, 1±2, 3)×10−5. A solução para massa pontual com Y1 = . . . = YN = (1+ƩNi=1 di)−1 contradiz esta restrição. A imposição T = 0 satisfaz essa limitação experimental e define uma nova classe de soluções que são indistinguíveis para a relatividade geral. Chamamos estas soluções de sólitons latentes. Cordas negras e membranas negras com Yi = 0 pertencem a esta classe. Além disso, a condição de estabilidade dos espaços internos destaca cordas/membranas negras de sólitons latentes, conduzindo exclusivamente para as equações de estado de corda/membrana negra pi = −ε/2, i = 1, . . . ,N, nos espaços internos e ao número de dimensões externas d0 = 3. As investigações do fluido perfeito multidimensional estático e esfericamente simétrico com equação de estado tipo poeira no espaço externo confirmam os resultados acima.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The present work shows a coupling of electrical and gravitational fields through Cauchy-Riemann conditions for quaternions present in a previous paper [1]. It is also obtained an extended version of the Laplace-like equations for quaternions, now written in terms of both electric and gravitational fields.
Resumo:
In this work, we consider the second-order discontinuous equation in the real line, u′′(t)−ku(t)=f(t,u(t),u′(t)),a.e.t∈R, with k>0 and f:R3→R an L1 -Carathéodory function. The existence of homoclinic solutions in presence of not necessarily ordered lower and upper solutions is proved, without periodicity assumptions or asymptotic conditions. Some applications to Duffing-like equations are presented in last section.
Resumo:
Artificial boundary conditions are presented to approximate solutions to Stokes- and Navier-Stokes problems in domains that are layer-like at infinity. Based on results about existence and asymptotics of the solutions v^infinity, p^infinity to the problems in the unbounded domain Omega the error v^infinity - v^R, p^infinity - p^R is estimated in H^1(Omega_R) and L^2(Omega_R), respectively. Here v^R, p^R are the approximating solutions on the truncated domain Omega_R, the parameter R controls the exhausting of Omega. The artificial boundary conditions involve the Steklov-Poincare operator on a circle together with its inverse and thus turn out to be a combination of local and nonlocal boundary operators. Depending on the asymptotic decay of the data of the problems, in the linear case the error vanishes of order O(R^{-N}), where N can be arbitrarily large.
Resumo:
The main goal of this paper is to derive long time estimates of the energy for the higher order hyperbolic equations with time-dependent coefficients. in particular, we estimate the energy in the hyperbolic zone of the extended phase space by means of a function f (t) which depends on the principal part and on the coefficients of the terms of order m - 1. Then we look for sufficient conditions that guarantee the same energy estimate from above in all the extended phase space. We call this class of estimates hyperbolic-like since the energy behavior is deeply depending on the hyperbolic structure of the equation. In some cases, these estimates produce a dissipative effect on the energy. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
[EN] The purpose of this paper is to present a fixed point theorem for generalized contractions in partially ordered complete metric spaces. We also present an application to first-order ordinary differential equations.
Resumo:
Trivium is a bit-based stream cipher in the final portfolio of the eSTREAM project. In this paper, we apply the approach of Berbain et al. to Trivium-like ciphers and perform new algebraic analyses on them, namely Trivium and its reduced versions: Trivium-N, Bivium-A and Bivium-B. In doing so, we answer an open question in the literature. We demonstrate a new algebraic attack on Bivium-A. This attack requires less time and memory than previous techniques which use the F4 algorithm to recover Bivium-A's initial state. Though our attacks on Bivium-B, Trivium and Trivium-N are worse than exhaustive keysearch, the systems of equations which are constructed are smaller and less complex compared to previous algebraic analysis. Factors which can affect the complexity of our attack on Trivium-like ciphers are discussed in detail.
Resumo:
Trivium is a bit-based stream cipher in the final portfolio of the eSTREAM project. In this paper, we apply the algebraic attack approach of Berbain et al. to Trivium-like ciphers and perform new analyses on them. We demonstrate a new algebraic attack on Bivium-A. This attack requires less time and memory than previous techniques to recover Bivium-A's initial state. Though our attacks on Bivium-B, Trivium and Trivium-N are worse than exhaustive keysearch, the systems of equations which are constructed are smaller and less complex compared to previous algebraic analyses. We also answer an open question posed by Berbain et al. on the feasibility of applying their technique on Trivium-like ciphers. Factors which can affect the complexity of our attack on Trivium-like ciphers are discussed in detail. Analysis of Bivium-B and Trivium-N are omitted from this manuscript. The full paper is available on the IACR ePrint Archive.
Resumo:
On a characteristic surface Omega of a hyperbolic system of first-order equations in multi-dimensions (x, t), there exits a compatibility condition which is in the form of a transport equation along a bicharacteristic on Omega. This result can be interpreted also as a transport equation along rays of the wavefront Omega(t) in x-space associated with Omega. For a system of quasi-linear equations, the ray equations (which has two distinct parts) and the transport equation form a coupled system of underdetermined equations. As an example of this bicharacteristic formulation, we consider two-dimensional unsteady flow of an ideal magnetohydrodynamics gas with a plane aligned magnetic field. For any mode of propagation in this two-dimensional flow, there are three ray equations: two for the spatial coordinates x and y and one for the ray diffraction. In spite of little longer calculations, the final four equations (three ray equations and one transport equation) for the fast magneto-acoustic wave are simple and elegant and cannot be derived in these simple forms by use of a computer program like REDUCE.
Resumo:
A new structured discretization of 2D space, named X-discretization, is proposed to solve bivariate population balance equations using the framework of minimal internal consistency of discretization of Chakraborty and Kumar [2007, A new framework for solution of multidimensional population balance equations. Chem. Eng. Sci. 62, 4112-4125] for breakup and aggregation of particles. The 2D space of particle constituents (internal attributes) is discretized into bins by using arbitrarily spaced constant composition radial lines and constant mass lines of slope -1. The quadrilaterals are triangulated by using straight lines pointing towards the mean composition line. The monotonicity of the new discretization makes is quite easy to implement, like a rectangular grid but with significantly reduced numerical dispersion. We use the new discretization of space to automate the expansion and contraction of the computational domain for the aggregation process, corresponding to the formation of larger particles and the disappearance of smaller particles by adding and removing the constant mass lines at the boundaries. The results show that the predictions of particle size distribution on fixed X-grid are in better agreement with the analytical solution than those obtained with the earlier techniques. The simulations carried out with expansion and/or contraction of the computational domain as population evolves show that the proposed strategy of evolving the computational domain with the aggregation process brings down the computational effort quite substantially; larger the extent of evolution, greater is the reduction in computational effort. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Structural health monitoring of existing infrastructure is currently an active field of research, where elaborate experimental programs and advanced analytical methods are used in identifying the current state of health of critical structures. Change of static deflection as the indicator of damage is the simplest tool in a structural health monitoring scenario of bridges that is least exploited in damage identification strategies. In this paper, some simple and elegant equations based on loss of symmetry due to damage are derived and presented for identification of damage in a bridge girder modeled as a simply supported beam using changes in static deflections and dynamic parameters. A single contiguous and distributed damage, typical of reinforced or prestressed concrete structures, is assumed for the structure. The methodology is extended for a base-line-free as well as base-line-inclusive measurement. Measurement strategy involves application of loads only at two symmetric points one at a time and deflection measurements at those symmetric points as well as at the midspan of the beam. A laboratory-based experiment is used to validate the approach. Copyright (c) 2012 John Wiley & Sons, Ltd.