995 resultados para NITROGEN ISOTOPE COMPOSITION


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stable isotopic compositions of carbon and nitrogen and organic carbon content of sediments ranging from the Pliocene to the Pleistocene-Holocene in age from the Oman Margin (ODP Sites 724 and 725) are reported. In general, the organic carbon content is greater than 2% at Site 724. Prior to the Pleistocene-Holocene at this site, sediments with higher content of organic matter were deposited owing to favorable preservation conditions and/or higher productivity. In the Pleistocene, lower amounts of organic matter have been preserved; this material generally has more enriched nitrogen isotopic compositions. This may indicate intensification of the Oxygen Minimum Zone and denitrification with the onset of the Pleistocene. A correlation of carbon isotope content of these sediments with oxygen isotope stages at Site 724 indicates an enrichment in 13C during glacial events. Based on the stable isotope evidence of both carbon and nitrogen, there does not appear to be major input of terrigenous-derived allochthonous material in this marine environment. The timing and extent of monsoon winds on the productivity of this region are not evident, but require further studies for collaborative interpretation of small-scale features in the isotopic and carbon content of this environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study presents novel evidence that N-15 natural abundance can be used as a robust indicator to detect pollutant nitrogen in natural plant communities. Vegetation from the heavily polluted industrial area of Cubatao in Sao Paulo State, SE Brazil, was strongly N-15 depleted compared to plants at remote sites. Historic herbarium samples from Cubatao were significantly less N-15 depleted than extant plants, indicating that N-15 depletion of vegetation is associated with present-day nitrogen pollution in Cubatao. The heavy load of nitrogenous atmospheric pollutants in Cubatao provides a nitrogen source for plants, and strongly N-15 depleted air NH3 is likely to contribute to plant and soil N-15 depletion. Epiphytic plants from Cubatao were extremely N-15 depleted (average -10.9parts per thousand) contrasting with epiphytes at remote sites (averages -1.0parts per thousand and -3.0parts per thousand). Nitrogen isotope composition of vegetation provides a tool to determine input of pollutant nitrogen into plant communities. The strong isotopic change of epiphytes suggests that epiphytes are particularly sensitive biomonitors for atmospheric pollutant nitrogen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Der atmosphärische Kreislauf reaktiver Stickstoffverbindungen beschäftigt sowohl die Naturwissenschaftler als auch die Politik. Dies ist insbesondere darauf zurückzuführen, dass reaktive Stickoxide die Bildung von bodennahem Ozon kontrollieren. Reaktive Stickstoffverbindungen spielen darüber hinaus als gasförmige Vorläufer von Feinstaubpartikeln eine wichtige Rolle und der Transport von reaktivem Stickstoff über lange Distanzen verändert den biogeochemischen Kohlenstoffkreislauf des Planeten, indem er entlegene Ökosysteme mit Stickstoff düngt. Die Messungen von stabilen Stickstoffisotopenverhältnissen (15N/14N) bietet ein Hilfsmittel, welches es erlaubt, die Quellen von reaktiven Stickstoffverbindungen zu identifizieren und die am Stickstoffkeislauf beteiligten Reaktionen mithilfe ihrer reaktionsspezifischen Isotopenfraktionierung genauer zu untersuchen. rnIn dieser Doktorarbeit demonstriere ich, dass es möglich ist, mit Hilfe von Nano-Sekundärionenmassenspektrometrie (NanoSIMS) verschiedene stickstoffhaltige Verbindungen, die üblicherweise in atmosphärischen Feinstaubpartikeln vorkommen, mit einer räumlichen Auflösung von weniger als einem Mikrometer zu analysieren und zu identifizieren. Die Unterscheidung verschiedener stickstoffhaltiger Verbindungen erfolgt anhand der relativen Signalintensitäten der positiven und negativen Sekundärionensignale, die beobachtet werden, wenn die Feinstaubproben mit einem Cs+ oder O- Primärionenstrahl beschossen werden. Die Feinstaubproben können direkt auf dem Probenahmesubstrat in das Massenspektrometer eingeführt werden, ohne chemisch oder physikalisch aufbereited zu werden. Die Methode wurde Mithilfe von Nitrat, Nitrit, Ammoniumsulfat, Harnstoff, Aminosären, biologischen Feinstaubproben (Pilzsporen) und Imidazol getestet. Ich habe gezeigt, dass NO2 Sekundärionen nur beim Beschuss von Nitrat und Nitrit (Salzen) mit positiven Primärionen entstehen, während NH4+ Sekundärionen nur beim Beschuss von Aminosäuren, Harnstoff und Ammoniumsalzen mit positiven Primärionen freigesetzt werden, nicht aber beim Beschuss biologischer Proben wie z.B. Pilzsporen. CN- Sekundärionen werden beim Beschuss aller stickstoffhaltigen Verbindungen mit positiven Primärionen beobachtet, da fast alle Proben oberflächennah mit Kohlenstoffspuren kontaminiert sind. Die relative Signalintensität der CN- Sekundärionen ist bei kohlenstoffhaltigen organischen Stickstoffverbindungen am höchsten.rnDarüber hinaus habe ich gezeigt, dass an reinen Nitratsalzproben (NaNO3 und KNO3), welche auf Goldfolien aufgebracht wurden speziesspezifische stabile Stickstoffisotopenverhältnisse mithilfe des 15N16O2- / 14N16O2- - Sekundärionenverhältnisses genau und richtig gemessen werden können. Die Messgenauigkeit auf Feldern mit einer Rastergröße von 5×5 µm2 wurde anhand von Langzeitmessungen an einem hausinternen NaNO3 Standard als ± 0.6 ‰ bestimmt. Die Differenz der matrixspezifischen instrumentellen Massenfraktionierung zwischen NaNO3 und KNO3 betrug 7.1 ± 0.9 ‰. 23Na12C2- Sekundärionen können eine ernst zu nehmende Interferenz darstellen wenn 15N16O2- Sekundärionen zur Messung des nitratspezifischen schweren Stickstoffs eingesetzt werden sollen und Natrium und Kohlenstoff im selben Feinstaubpartikel als interne Mischung vorliegt oder die natriumhaltige Probe auf einem kohlenstoffhaltigen Substrat abgelegt wurde. Selbst wenn, wie im Fall von KNO3, keine derartige Interferenz vorliegt, führt eine interne Mischung mit Kohlenstoff im selben Feinstaubpartikel zu einer matrixspezifischen instrumentellen Massenfraktionierung die mit der folgenden Gleichung beschrieben werden kann: 15Nbias = (101 ± 4) ∙ f − (101 ± 3) ‰, mit f = 14N16O2- / (14N16O2- + 12C14N-). rnWird das 12C15N- / 12C14N- Sekundärionenverhältnis zur Messung der stabilen Stickstoffisotopenzusammensetzung verwendet, beeinflusst die Probematrix die Messungsergebnisse nicht, auch wenn Stickstoff und Kohlenstoff in den Feinstaubpartikeln in variablen N/C–Verhältnissen vorliegen. Auch Interferenzen spielen keine Rolle. Um sicherzustellen, dass die Messung weiterhin spezifisch auf Nitratspezies eingeschränkt bleibt, kann eine 14N16O2- Maske bei der Datenauswertung verwendet werden. Werden die Proben auf einem kohlenstoffhaltigen, stickstofffreien Probennahmesubstrat gesammelt, erhöht dies die Signalintensität für reine Nitrat-Feinstaubpartikel.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carbon isotope composition (delta C-13), oxygen isotope composition (delta O-18), and nitrogen concentration (N-mass) of branchlet tissue at two canopy positions were assessed for glasshouse seedlings and 9-year-old hoop pine (Araucaria cunninghamii Ait. ex D. Don) trees from 22 open-pollinated families grown in 5 blocks of a progeny test at a water-limited and nitrogen-deficient site in southeastern Queensland, Australia. Significant variations in canopy delta C-13, delta O-18, and N-mass existed among the 9-year-old hoop pine families, with a heritability estimate of 0.72 for branchlet delta C-13 from the upper inner canopy position. There was significant variation in canopy delta C-13 of glasshouse seedlings between canopy positions and among the families, with a heritability estimate of 0.66. The canopy delta C-13 was positively related to canopy N-mass only for the upper outer crown in the field (R = 0.62, p < 0.001). Phenotypic correlations existed between tree height and canopy delta C-13 (R = 0.37-0.41, p < 0.001). Strong correlations were found between family canopy delta C-13 at this site and those at a wetter site and between field canopy delta C-13 and glasshouse seedling delta C-13. The mechanisms of the variation in canopy delta C-13 are discussed in relation to canopy photosynthetic capacity as reflected in the N-mass and stomatal conductance as indexed by canopy delta O-18.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objectives of this study were: (1) to quantify the genetic variation in foliar carbon isotope composition (delta(13)C) of 122 clones of ca. 4-year-old F-1 hybrids between slash pine (Pinus elliottii Engelm var. elliottii) and Caribbean pine (Pinus caribaea var. hondurensis Barr.,et Golf.) grown at two field experimental sites with different water and nitrogen availability in southeast Queensland, Australia, in relation to tree growth and foliar nitrogen concentration (N-mass); and (2) to assess the potential of using delta(13)C measurements, in the foliage materials collected from the clone hedges at nursery and the 4-year-old tree canopies in the field, as an indirect index of tree water use efficiency for selecting elite F-1 hybrid pine clones with improved tree growth. There were significant differences in foliar delta(13)C between the nursery hedges and the 4-year-old tree canopies in the field, between the summer and winter seasons, between the two experimental sites, and between the upper outer and lower outer canopy positions sampled. This indicates that delta(13)C measurements in the foliage materials are significantly influenced by the sampling techniques and environmental conditions. Significant differences in foliar delta(13)C, at the upper outer canopy in both field experiments in summer and winter, were detected between the clones, and between the female parents of the clones. Clone means of tree height at age ca. 3 years were positively related to those of the upper outer canopy delta(13)C at both experimental sites in winter, but only for the wetter site in summer. There were positive, linear relationships between clone means of canopy delta(13)C and those of canopy N-mass, indicating that canopy photosynthetic capacity might be an important factor regulating the clonal variation in canopy delta(13)C. Significant correlations were found between clone means of canopy delta(13)C at both experimental sites in summer and winter, and between those at the upper outer and lower outer canopy positions. Mean clone delta(13)C for the nursery hedges was only positively related to mean clone stem diameter at 1.3 m height at age 3 years on the wetter site. The clone by site interaction for foliar delta(13)C at the upper outer canopy was significant only in summer. Overall, the relatively high genetic variance components for foliar delta(13)C and significant, positive correlations between clone means of foliar delta(13)C and tree growth have highlighted the potential of using foliar delta(13)C measurements for assisting in selection of the elite F-1 hybrid pine clones with improved tree growth. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The feeding ecology of Merluccius hubbsi was investigated in 2 regions of SE Brazil. The major food sources for the hakes were fish, crustaceans, and squid. In the upwelling system of Cabo Frio, the diet was very similar in the summers of 2001/2002 and spring 2002; fish were the most important prey followed by crustaceans. In Ubatuba, euphausiids were an important prey during the winter 2001 (100 m), while in the summer 2002, fish and amphipods predominated in the diet in the shallower site (40 m) and squid in the deeper site (100 m). The hakes showed temporal differences in stable isotope signatures in both regions, while C:N ratios varied only in Cabo Frio. delta(15)N and delta(13)C (bulk and corrected for lipid content) increased with fish length, which seems to be related to the increasing importance of fish and decreasing importance of euphausiids and amphipods in the diet of larger hakes. The mean trophic level of 3.7 for M. hubbsi was estimated using delta(15)N of bivalves as baseline and the fractionation of 3.4aEuro degrees between trophic levels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Knowledge of the fate of deposited N in the possibly N-limited, highly biodiverse north Andean forests is important because of the possible effects of N inputs on plant performance and species composition. We analyzed concentrations and fluxes of NO3 −–N, NH4 +–N and dissolved organic N (DON) in rainfall, throughfall, litter leachate, mineral soil solutions (0.15–0.30 m depths) and stream water in a montane forest in Ecuador during four consecutive quarters and used the natural 15N abundance in NO3 − during the passage of rain water through the ecosystem and bulk δ15N values in soil to detect N transformations. Depletion of 15N in NO3 − and increased NO3 −–N fluxes during the passage through the canopy and the organic layer indicated nitrification in these compartments. During leaching from the organic layer to mineral soil and stream, NO3 − concentrations progressively decreased and were enriched in 15N but did not reach the δ15N values of solid phase organic matter (δ15N = 5.6–6.7‰). This suggested a combination of nitrification and denitrification in mineral soil. In the wettest quarter, the δ15N value of NO3 − in litter leachate was smaller (δ15N = −1.58‰) than in the other quarters (δ15N = −9.38 ± SE 0.46‰) probably because of reduced mineralization and associated fractionation against 15N. Nitrogen isotope fractionation of NO3 − between litter leachate and stream water was smaller in the wettest period than in the other periods probably because of a higher rate of denitrification and continuous dilution by isotopically lighter NO3 −–N from throughfall and nitrification in the organic layer during the wettest period. The stable N isotope composition of NO3 − gave valuable indications of N transformations during the passage of water through the forest ecosystem from rainfall to the stream.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We compare total and biogenic particle fluxes and stable nitrogen isotope ratios (d15N) at three mooring sites along a productivity gradient in the Canary Islands region with surface sediment accumulation rates and sedimentary d15N. Higher particle fluxes and sediment accumulation rates, and lower d15N were observed in the upwelling influenced eastern boundary region (EBC) compared to the oligotrophic sites north of Gran Canaria [European Station for Time-Series in the Ocean, Canary Islands (ESTOC]] and north of La Palma (LP). The impact of organic matter degradation and lateral particle advection on sediment accumulation was quantified with respect to the multi-year flux record at the ESTOC. Remineralisation of organic matter in the water column and at the sediment surface resulted in an organic carbon preservation of about 0.8% and total nitrogen preservation of about 0.4% of the estimated export production. Higher total and carbonate fluxes and accumulation rates in the lower traps and surface sediment compared to the upper traps indicated that at least 50% of the particulate matter at the ESTOC was derived from allochthonous sources. Low d15N values in the lower traps of the ESTOC and LP point to a source region influenced by coastal upwelling. We conclude from this study that the reconstruction of export production or nutrient regimes from sedimentary records in regions with strong productivity gradients might be biased due to the mixture of particles originating from autochthonous and allochthonous sources. This could result in an imprint of high productivity signatures on sedimentation processes in oligotrophic regions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bulk sedimentary nitrogen isotope (d15Ntot) data have been generated from Lower Jurassic black, carbon-rich shales in the British Isles and northern Italy deposited during the early Toarcian oceanic anoxic event. A pronounced positive d15Ntot excursion through the exaratum Subzone of the falciferum Zone (defined by characteristic ammonites in the British Isles) broadly correlates with a relative maximum in weight percent total organic carbon and, in some sections, with a negative d13Corg excursion. Upwelling of a deoxygenated water mass that had undergone partial denitrification is the likely explanation for relative enrichment of d15Ntot, and parallels may be drawn with Quaternary sediments of the Arabian Sea, Gulf of California, and northwest Mexican margin. The development of Early Toarcian suboxic water masses and consequent partial denitrification is attributed to increases in organic productivity. Approximately coincident phenomena include the following: a relative climatic optimum, realignment of major oceanic current systems, and a possible release of methane gas hydrates from continental margin sediments early in the history of the oceanic anoxic event.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The spatial variability of biomass and stable isotopes in plankton size fractions in the upper 200 m was studied in a high spatial resolution transect along 24°N from Canary Islands to Florida (January - March 2011) during Leg 8 of the Malaspina-2010 expedition (http://www.expedicionmalaspina.es) to determine nitrogen and carbon sources. Plankton samples were collected by vertical tows of a microplankton net (40 mm mesh size) and a mesoplankton net (200 mm mesh size) through the upper 200 m of the water column. Sampling was between 10:00 and 16:00 h GMT. Plankton was separated into five size fractions (40 - 200, 200 - 500, 500 - 1000, 1000 - 2000 and > 2000 mm) by gentle filtration of the samples by a graded series of nylon sieves (2000, 1000, 500, 200 and 40 mm). Large gelatinous organisms were removed before filtration. Aliquots for each size fraction were collected on pre-weighed glass-fibre filters, dried (60°C, 48 h) and stored in a desiccator before determination of biomass (dry weight), carbon and nitrogen content and natural abundance of stable carbon and nitrogen isotopes ashore. Vertical advection of waters predominated in lateral zones while the central Atlantic (30-70°W) was characterized by a strong stratification and oligotrophic surface waters. Plankton biomass was low in the central zone and high in both eastern and western sides, with most of the variability due to either large (>2000 µm) and small plankton (<500 µm). Carbon isotopes reflected mainly the advection the deep water in lateral zones. Stable nitrogen isotopes showed a nearly symmetrical spatial distribution in all fractions, with the lowest values (delta15N <1per mill) in the central zone, and were inversely correlated to carbon stable isotopes (delta13C) and to the abundance of the nitrogen-fixer Trichodesmium. Diazotrophy was estimated to account for >50% of organic nitrogen in the central zone, and even >30% in eastern and western zones. The impact of diazotrophy increased with the size of the organisms, supporting the wide participation of all trophic levels in the processing of recently fixed nitrogen. These results indicate that atmospheric sources of carbon and nitrogen prevail over deep water sources in the subtropical North Atlantic and that the zone influenced by diazotrophy is much larger than reported in previous studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Celebes Basin sediments from Ocean Drilling Program Site 767 (Leg 124) containing both marine and terrestrial organic matter have been investigated through palynofacies and geochemical analyses. The main degradation processes affecting or having affected organic matter are recorded in the sedimentary column as shown by ammonium, phosphate and sulfate pore-water profiles, and by petrographic and geochemical analyses of sediments. In the upper part of the sedimentary section (down to 200 mbsf), the decrease of the ratio of total organic carbon to sulfur (TOC/S) with depth, generally related to the sulfate reduction process, is accompanied by an increase of framboidal pyrite content in the marine organic matter, and by an increasing amount of amorphous marine organic matter relative to the total organic matter. However, as the terrestrial organic input also varies with depth, dilution effects are superimposed on diagenesis. This continental supply affects the TOC/S ratio by increasing total organic carbon and decreasing the ability of the bulk organic matter to be metabolized through sulfate reduction. A positive relationship between the TOC/P ratio and the amount of degraded organic matter of marine origin clearly displays the effect of an organic source on the composition of the sediment. Each lithostratigraphic unit possesses its own characteristics in terms of composition and preservation of organic matter. The effects of diagenesis can only be appreciated within a single lithostratigraphic unit and mainly affect the less-resistant marine organic matter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The comprehensive isotopic composition of atmospheric nitrate (i.e., the simultaneous measurement of all its stable isotope ratios: 15N/14N, 17O/16O and 18O/16O) has been determined for aerosol samples collected in the marine boundary layer (MBL) over the Atlantic Ocean from 65°S (Weddell Sea) to 79°N (Svalbard), along a ship-borne latitudinal transect. In nonpolar areas, the d15N of nitrate mostly deriving from anthropogenically emitted NOx is found to be significantly different (from 0 to 6 per mil) from nitrate sampled in locations influenced by natural NOx sources (-4 ± 2) per mil. The effects on d15N(NO3-) of different NOx sources and nitrate removal processes associated with its atmospheric transport are discussed. Measurements of the oxygen isotope anomaly (D17O = d17O - 0.52 × d18O) of nitrate suggest that nocturnal processes involving the nitrate radical play a major role in terms of NOx sinks. Different D17O between aerosol size fractions indicate different proportions between nitrate formation pathways as a function of the size and composition of the particles. Extremely low d15N values (down to -40 per mil) are found in air masses exposed to snow-covered areas, showing that snowpack emissions of NOx from upwind regions can have a significant impact on the local surface budget of reactive nitrogen, in conjunction with interactions with active halogen chemistry. The implications of the results are discussed in light of the potential use of the stable isotopic composition of nitrate to infer atmospherically relevant information from nitrate preserved in ice cores.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cold-water corals (CWC) are frequently reported from deep sites with locally accelerated currents that enhance seabed food particle supply. Moreover, zooplankton likely account for ecologically important prey items, but their contribution to CWC diet remains unquantified. We investigated the benthic food web structure of the recently discovered Santa Maria di Leuca (SML) CWC province (300 to 1100 m depth) located in the oligotrophic northern Ionian Sea. We analyzed stable isotopes (delta13C and delta15N) of the main consumers (including ubiquitous CWC species) exhibiting different feeding strategies, zooplankton, suspended particulate organic matter (POM) and sedimented organic matter (SOM). Zooplankton and POM were collected 3 m above the coral colonies in order to assess their relative contributions to CWC diet. The delta15N of the scleractinians Desmophyllum dianthus, Madrepora oculata and Lophelia pertusa and the gorgonian Paramuricea cf. macrospinawere consistent with a diet mainly composed of zooplankton. The antipatharian Leiopathes glaberrima was more 15N- depletedthan other cnidarians, suggesting a lower contribution of zooplankton to its diet. Our delta13C data clearly indicate that the benthic food web of SML is exclusively fuelled by carbon of phytoplanktonic origin. Nevertheless, consumers feeding at the water sediment interface were more 13C-enriched than consumers feeding above the bottom (i.e. living corals and their epifauna). This pattern suggests that carbon is assimilated via 2 trophic pathways: relatively fresh phytoplanktonic production for 13C-depleted consumers and more decayed organic matter for 13C-enriched consumers. When the delta13C values of consumers were corrected for the influence of lipids (which are significantly 13C-depleted relative to other tissue components), our conclusions remained unchanged, except in the case of L. glaberrima which could assimilate a mixture of zooplankton and resuspended decayed organic matter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The majority of global ocean production and total export production is attributed to oligotrophic oceanic regions due to their vast regional expanse. However, energy transfers, food-web structures and trophic relationships in these areas remain largely unknown. Regional and vertical inter- and intra-specific differences in trophic interactions and dietary preferences of calanoid copepods were investigated in four different regions in the open eastern Atlantic Ocean (38°N to 21°S) in October/November 2012 using a combination of fatty acid (FA) and stable isotope (SI) analyses. Mean carnivory indices (CI) based on FA trophic markers generally agreed with trophic positions (TP) derived from d15N analysis. Most copepods were classified as omnivorous (CI ~0.5, TP 1.8 to ~2.5) or carnivorous (CI >=0.7, TP >=2.9). Herbivorous copepods showed typical CIs of <=0.3. Geographical differences in d15N values of epi- (200-0 m) to mesopelagic (1000-200 m) copepods reflected corresponding spatial differences in baseline d15N of particulate organic matter from the upper 100 m. In contrast, species restricted to lower meso- and bathypelagic (2000-1000 m) layers did not show this regional trend. FA compositions were species-specific without distinct intra-specific vertical or spatial variations. Differences were only observed in the southernmost region influenced by the highly productive Benguela Current. Apparently, food availability and dietary composition were widely homogeneous throughout the oligotrophic oceanic regions of the tropical and subtropical Atlantic. Four major species clusters were identified by principal component analysis based on FA compositions. Vertically migrating species clustered with epi- to mesopelagic, non-migrating species, of which only Neocalanus gracilis was moderately enriched in lipids with 16% of dry mass (DM) and stored wax esters (WE) with 37% of total lipid (TL). All other species of this cluster had low lipid contents (< 10% DM) without WE. Of these, the tropical epipelagic Undinula vulgaris showed highest portions of bacterial markers. Rhincalanus cornutus, R. nasutus and Calanoides carinatus formed three separate clusters with species-specific lipid profiles, high lipid contents (>=41% DM), mainly accumulated as WE (>=79% TL). C. carinatus and R. nasutus were primarily herbivorous with almost no bacterial input. Despite deviating feeding strategies, R. nasutus clustered with deep-dwelling, carnivorous species, which had high amounts of lipids (>=37% DM) and WE (>=54% TL). Tropical and subtropical calanoid copepods exhibited a wide variety of life strategies, characterized by specialized feeding. This allows them, together with vertical habitat partitioning, to maintain high abundance and diversity in tropical oligotrophic open oceans, where they play an essential role in the energy flux and carbon cycling.