768 resultados para NEUROMUSCULAR ELECTROSTIMULATION
Resumo:
Background: Neuromuscular electrostimulation has become a promising issue in cardiovascular rehabilitation. However there are few articles published in the literature regarding neuromuscular electrostimulation in patients with heart failure during hospital stay. Methods: This is a randomized controlled pilot trial that aimed to investigate the effect of neuromuscular electrostimulation in the walked distance by the six-minute walking test in 30 patients admitted to ward for heart failure treatment in a tertiary cardiology hospital. Patients in the intervention group performed a conventional rehabilitation and neuromuscular electrostimulation. Patients underwent 60 minutes of electrostimulation (wave frequency was 20 Hz, pulse duration of 20 us) two times a day for consecutive days until hospital discharge. Results: The walked distance in the six-minute walking test improved 75% in the electrostimulation group (from 379.7 +/- 43.5 to 372.9 +/- 46.9 meters to controls and from 372.9 +/- 62.4 to 500 +/- 68 meters to electrostimulation, p<0.001). On the other hand, the walked distance in the control group did not change. Conclusion: The neuromuscular electrostimulation group showed greater improvement in the walked distance in the six-minute walking test in patients admitted to ward for compensation of heart failure.
Resumo:
Background: Studies have investigated the influence of neuromuscular electrostimulation on the exercise/muscle capacity of patients with heart failure (HF), but the hemodynamic overload has never been investigated. The aim of our study was to evaluate the heart rate (HR), systolic and diastolic blood pressures in one session of strength exercises with and without neuromuscular electrostimulation (quadriceps) in HF patients and in healthy subjects. Methods: Ten (50% male) HF patients and healthy subjects performed three sets of eight repetitions with and without neuromuscular electrostimulation randomly, with one week between sessions. Throughout, electromyography was performed to guarantee the electrostimulation was effective. The hemodynamic variables were measured at rest, again immediately after the end of each set of exercises, and during the recovery period. Results: Systolic and diastolic blood pressures did not change during each set of exercises among either the HF patients or the controls. Without electrostimulation: among the controls, the HR corresponding to the first (85 ± 13 bpm, p = 0.002), second (84 ± 10 bpm, p < 0.001), third (89 ± 17, p < 0.001) sets and recuperation (83 ± 16 bpm, p = 0.012) were different compared to the resting HR (77 bpm). Moreover, the recuperation was different to the third set (0.018). Among HF patients, the HR corresponding to the first (84 ± 9 bpm, p = 0.041) and third (84 ± 10 bpm, p = 0.036) sets were different compared to the resting HR (80 ± 7 bpm), but this increase of 4 bpm is clinically irrelevant to HF. With electrostimulation: among the controls, the HR corresponding to the third set (84 ± 9 bpm) was different compared to the resting HR (80 ± 7 bmp, p = 0.016). Among HF patients, there were no statistical differences between the sets. The procedure was well tolerated and no subjects reported muscle pain after 24 hours. Conclusions: One session of strength exercises with and without neuromuscular electrostimulation does not promote a hemodynamic overload in HF patients. (Cardiol J 2011; 18, 1: 39-46)
Resumo:
Background and Purpose. This descriptive cohort study investigated a physical therapy program of pelvic-floor neuromuscular electrostimulation (NMES) combined with exercises, with the aim of developing a simple, inexpensive, and conservative treatment for postpartum genuine stress incontinence (GSI). Subjects. Eight female subjects with urodynamically established GSI persisting more than 3 months after delivery participated in the study. The subjects ranged in age from 24 to 37 years (X̅=32, SD=4.2). Methods. This was a descriptive multiple-subject cohort study. Each subject received a total of nine treatment sessions during 3 consecutive weeks, consisting of two 15-minute sessions of NMES followed by a 15-minute pelvic-floor muscle exercise program. Patients also practiced daily pelvic-floor exercises during the 3-week treatment period. The treatment intervention was measured using three separate variables. Maximum muscle contractions (pretraining, during training, and posttraining) were measured indirectly as pressure, using perineometry. Urine loss pretraining and posttraining was measured by means of a Pad test. Self-reported frequency of incontinence was recorded daily throughout the period of the study, using a diary. Data were analyzed using a one-way repeated measures analysis of variance (ANOVA), a Wilcoxon signed-ranks test, and a Friedman two-way ANOVA by ranks. Results. The results indicated that maximum pressure generated by pelvic-floor contractions was greater and both the quantity of urine loss and the frequency of incontinence were lower following the implementation of the physical therapy program. Five subjects became continent, and three others improved. A follow-up survey 1 year later confirmed the consistency of these results. Conclusion and Discussion. The results suggest that the proposed physical therapy program may influence postpartum GSI. Further studies are needed to validate this simple, inexpensive, and conservative physical therapy protocol.
Resumo:
Background and Purpose. This descriptive cohort study investigated a physical therapy program of pelvic-floor neuromuscular electrostimulation (NMES) combined with exercises, with the aim of developing a simple, inexpensive, and conservative treatment for postpartum genuine stress incontinence (GSI). Subjects. Eight female subjects with urodynamically established GSI persisting more than 3 months after delivery participated in the study. The subjects ranged in age from 24 to 37 years (X̅=32, SD=4.2). Methods. This was a descriptive multiple-subject cohort study. Each subject received a total of nine treatment sessions during 3 consecutive weeks, consisting of two 15-minute sessions of NMES followed by a 15-minute pelvic-floor muscle exercise program. Patients also practiced daily pelvic-floor exercises during the 3-week treatment period. The treatment intervention was measured using three separate variables. Maximum muscle contractions (pretraining, during training, and posttraining) were measured indirectly as pressure, using perineometry. Urine loss pretraining and posttraining was measured by means of a Pad test. Self-reported frequency of incontinence was recorded daily throughout the period of the study, using a diary. Data were analyzed using a one-way repeated measures analysis of variance (ANOVA), a Wilcoxon signed-ranks test, and a Friedman two-way ANOVA by ranks. Results. The results indicated that maximum pressure generated by pelvic-floor contractions was greater and both the quantity of urine loss and the frequency of incontinence were lower following the implementation of the physical therapy program. Five subjects became continent, and three others improved. A follow-up survey 1 year later confirmed the consistency of these results. Conclusion and Discussion. The results suggest that the proposed physical therapy program may influence postpartum GSI. Further studies are needed to validate this simple, inexpensive, and conservative physical therapy protocol.
Resumo:
Objective: To evaluate the skeletal muscle glycogen content and plasmatic concentration of interleukin -6 (IL-6), interleukin-4 (IL-4), interleukin-10 (IL-10) and tumor necrosis factor-alpha (TNF-α) in rats submitted to electrical stimulation sessions during the first three days of ankle immobilization at the position of 90°. Methods: Albinomale Wistar rats(3-4 months) were maintained in vivarium. conditions with food and water ad libitum, Submitted to 12 h photoperiodic cycles of light/dark, and distributed into 7 experimental groups (n = 6): control(C), immobilized 1 day(I1) immobilized 1 day and electrically stimulated(IE1) immobilized 2 days(12), immobilized 2 days and electrically stimulated(IE2), immobilized 3 days(13) and immobilized 3 days and electrically stimulated(IE3). Groups I utilized an acrylic resin orthesis model and groups electrically stimulated (IE) utilized the orthesis and a session of electrotherapy by a Dualpex 961 (biphasic quadratic pulse, 10 Hz, 0.4 ms, 5.0 mA, one 20 min session a day). After the experimental period, the rats were anesthetized with pentobarbital sodium(40 mg/kg) and a blood sample was colleted to evaluate the plasmatic concentration of interleukins by means of the radioimmunoassay method. The soleus and the white portion of the gastrocnemius muscle were colleted for glycogen reserves analysis(GLY). Other groups of rats were used to apply the glucose tolerance test(GTT) and insulin tolerance test(ITT). For statistical analysis, the Kolmogorov-Smirnov normality test followed by ANOVA and the Tukey tests were utilized, with a critical level established at 5%. Results: In ITT test, groups IE enhanced the skeletal muscle glucose uptake, but no changes were observed in GTT after the therapy session, which indicates that electrical stimulation is a sensibilizing method to augment skeletal muscle glucose uptake. The GLY reserves were reduced in I groups, which indicate that disuse altered insulin sensitivity and compromised energetic homeostasis. However. the IE groups displayed an augment in GLY content, suggesting that electrical stimulation restores the enzymatic pathways altered by immobilization. The improvement in GLY was accompanied by an elevation of the plasmatic concentration of IL-6 and TNF-α, showing the participation of these interleukins in the control of metabolic profile. Plasmatic concentrations of IL-10 were elevated only after 3 days of IE while IL-4 did not display any modifications. Conclusion: The results suggest that neuromuscular electricaf stimulation is an important toot in the maintenance of energetic, conditions of musculature submitted to immobilization, and presents multifactor mechanisms linked to interleukins action that converge to maintain the energetic equilibrium of the tissue in disuse.
Resumo:
Athletic coaching can involve observation of a motor control task and then proposing guidance to an athlete about how the task performance can be developed. Coaches can identify the technique elements that seem to hinder performance and then provide instruction. Recently, a variety of training methods were proposed to enhance sprint performance, however a number of authors have identified these methods as characterised by low scientific evaluation or support (Brown & Vescovi, 2012; Jones, Bezodis, & Thompson, 2009). This article will outline a scientifically robust neuromuscular theory underlying poor movement techniques that may be visible when coaches observe sprint performance. The goal of this article is to inform the sprint coach of a method to identify and correct suboptimal biomechanics to enhance athletic performance.
Resumo:
Hamstring strain injuries are amongst the most common and problematic injuries in a wide range of sports that involve high speed running. The comparatively high rate of hamstring injury recurrence is arguably the most concerning aspect of these injuries. A number of modifiable and nonmodifiable risk factors are proposed to predispose athletes to hamstring strains. Potentially, the persistence of risk factors and the development of maladaptations following injury may explain injury recurrence. Here, the role of neuromuscular inhibition following injury is discussed as a potential mechanism for several maladaptations associated with hamstring re-injury. These maladaptations include eccentric hamstring weakness, selective hamstring atrophy and shifts in the knee flexor torque-joint angle relationship. Current evidence indicates that athletes return to competition after hamstring injury having developed maladaptations that predispose them to further injury. When rehabilitating athletes to return to competition following hamstring strain injury, the role of neuromuscular inhibition in re-injury should be considered.
Resumo:
Objectives: The current study investigated the change in neuromuscular contractile properties following competitive rugby league matches and the relationship with physical match demands. Design: Eleven trained, male rugby league players participated in 2–3 amateur, competitive matches (n = 30). Methods: Prior to, immediately (within 15-min) and 2 h post-match, players performed repeated counter-movement jumps (CMJ) followed by isometric tests on the right knee extensors for maximal voluntary contraction (MVC), voluntary activation (VA) and evoked twitch contractile properties of peak twitch force (Pt), rate of torque development (RTD), contraction duration (CD) and relaxation rate (RR). During each match, players wore 1 Hz Global Positioning Satellite devices to record distance and speeds of matches. Further, matches were filmed and underwent notational analysis for number of total body collisions. Results: Total, high-intensity, very-high intensity distances covered and mean speed were 5585 ± 1078 m, 661 ± 265, 216 ± 121 m and 75 ± 14 m min−1, respectively. MVC was significantly reduced immediately and 2 h post-match by 8 ± 11 and 12 ± 13% from pre-match (p < 0.05). Moreover, twitch contractile properties indicated a suppression of Pt, RTD and RR immediately post-match (p < 0.05). However, VA was not significantly altered from pre-match (90 ± 9%), immediately-post (89 ± 9%) or 2 h post (89 ± 8%), (p > 0.05). Correlation analyses indicated that total playing time (r = −0.50) and mean speed (r = −0.40) were moderately associated to the change in post-match MVC, while mean speed (r = 0.35) was moderately associated to VA. Conclusions: The present study highlights the physical demands of competitive amateur rugby league result in interruption of peripheral contractile function, and post-match voluntary torque suppression may be associated with match playing time and mean speeds.
Resumo:
Purpose The neuromuscular mechanisms determining the mechanical behaviour of the knee during landing impact remain poorly understood. It was hypothesised that neuromuscular preparation is subject-specific and ranges along a continuum from passive to active. Methods A group of healthy men (N = 12) stepped-down from a knee-high platform for 60 consecutive trials. Surface EMG of the quadriceps and hamstrings was used to determine pre-impact onset timing, activation amplitude and cocontraction for each trial. Partial least squares regression was used to associate pre-impact preparation with post-impact knee stiffness and coordination. Results The group analysis revealed few significant changes in pre-impact preparation across trial blocks. Single-subject analyses revealed changes in muscle activity that varied in size and direction between individuals. Further, the association between pre-impact preparation and post-impact knee mechanics was subject-specific and ranged along a continuum of strategies. Conclusion The findings suggest that neuromuscular preparation during step landing is subject-specific and its association to post-impact knee mechanics occurs along a continuum, ranging from passive to active control strategies. Further work should examine the implications of these strategies on the distribution of knee forces in-vivo.
Resumo:
This thesis examined the impact of previous hamstring injury and fatigue on the function of the hamstring muscles and their neural control. The work established the role of neuromuscular inhibition after hamstring injury and involved the development of a new field testing device for eccentric hamstring strength, which is now in high demand in elite sport worldwide. David has four peer-reviewed publications from this doctoral work.
Resumo:
PURPOSE: The purpose of the present study was to analyze the neuromuscular responses during the performance of a sit to stand [STS] task in water and on dry land. SCOPE: 10 healthy subjects, five males and five females were recruited for study. Surface electromyography sEMG was used for lower limb and trunk muscles maximal voluntarty contraction [MVC] and during the STS task. RESULTS: Muscle activity was significantly higher on dry land than in water normalized signals by MVC from the quadriceps-vastus medialis [17.3%], the quadriceps - rectus femoris [5.3%], the long head of the biceps femoris [5.5%], the tibialis anterior [13.9%], the gastrocnemius medialis [3.4%], the soleus [6.2%]. However, the muscle activity was higher in water for the rectus abdominis [-26.6%] and the erector spinae [-22.6%]. CONCLUSIONS: This study for the first time describes the neuromuscular responses in healthy subjects during the performance of the STS task in water. The differences in lower limb and trunk muscle activity should be considered when using the STS movement in aquatic rehabilitation.
Resumo:
Neuroimaging studies have shown neuromuscular electrical stimulation (NMES)-evoked movements activate regions of the cortical sensorimotor network, including the primary sensorimotor cortex (SMC), premotor cortex (PMC), supplementary motor area (SMA), and secondary somatosensory area (S2), as well as regions of the prefrontal cortex (PFC) known to be involved in pain processing. The aim of this study, on nine healthy subjects, was to compare the cortical network activation profile and pain ratings during NMES of the right forearm wrist extensor muscles at increasing current intensities up to and slightly over the individual maximal tolerated intensity (MTI), and with reference to voluntary (VOL) wrist extension movements. By exploiting the capability of the multi-channel time domain functional near-infrared spectroscopy technique to relate depth information to the photon time-of-flight, the cortical and superficial oxygenated (O2Hb) and deoxygenated (HHb) hemoglobin concentrations were estimated. The O2Hb and HHb maps obtained using the General Linear Model (NIRS-SPM) analysis method, showed that the VOL and NMES-evoked movements significantly increased activation (i.e., increase in O2Hb and corresponding decrease in HHb) in the cortical layer of the contralateral sensorimotor network (SMC, PMC/SMA, and S2). However, the level and area of contralateral sensorimotor network (including PFC) activation was significantly greater for NMES than VOL. Furthermore, there was greater bilateral sensorimotor network activation with the high NMES current intensities which corresponded with increased pain ratings. In conclusion, our findings suggest that greater bilateral sensorimotor network activation profile with high NMES current intensities could be in part attributable to increased attentional/pain processing and to increased bilateral sensorimotor integration in these cortical regions.