932 resultados para NANOSCALE
Resumo:
The dynamic lateral segregation of signaling proteins into microdomains is proposed to facilitate signal transduction, but the constraints on microdomain size, mobility, and diffusion that might realize this function are undefined. Here we interrogate a stochastic spatial model of the plasma membrane to determine how microdomains affect protein dynamics. Taking lipid rafts as representative microdomains, we show that reduced protein mobility in rafts segregates dynamically partitioning proteins, but the equilibrium concentration is largely independent of raft size and mobility. Rafts weakly impede small-scale protein diffusion but more strongly impede long-range protein mobility. The long-range mobility of raft-partitioning and raft-excluded proteins, however, is reduced to a similar extent. Dynamic partitioning into rafts increases specific interprotein collision rates, but to maximize this critical, biologically relevant function, rafts must be small (diameter, 6 to 14 nm) and mobile. Intermolecular collisions can also be favored by the selective capture and exclusion of proteins by rafts, although this mechanism is generally less efficient than simple dynamic partitioning. Generalizing these results, we conclude that microdomains can readily operate as protein concentrators or isolators but there appear to be significant constraints on size and mobility if microdomains are also required to function as reaction chambers that facilitate nanoscale protein-protein interactions. These results may have significant implications for the many signaling cascades that are scaffolded or assembled in plasma membrane microdomains.
Resumo:
Nitrate reduction with nanoscale zero-valent iron (NZVI) was reported as a potential technology to remove nitrate from nitrate-contaminated water. In this paper, nitrate reduction with NZVI prepared by hydrogen reduction of natural goethite (NZVI-N, -N represents natural goethite) and hydrothermal goethite (NZVI-H, -H represents hydrothermal goethite) was conducted. Besides, the effects of reaction time, nitrate concentration, iron-to-nitrate ratio on nitrate removal rate over NZVI-H and NZVI-N were investigated. To prove their excellent nitrate reduction capacities, NZVI-N and NZVI-H were compared with ordinary zero-valent iron (OZVI-N) through the static experiments. Based on all above investigations, the mechanism of nitrate reduction with NZVI-N was proposed. The result showed that reaction time, nitrate concentration, iron-to-nitrate ratio played an important role in nitrate reduction by NZVI-N and NZVI-H. Compared with OZVI, NZVI-N and NZVI-H showed little relationship with pH. And NZVI-N for nitrate composition offers a higher stability than NZVI-H because of the existence of Al-substitution. Furthermore, NZVI-N, prepared by hydrogen reduction of goethite, has higher activity for nitrate reduction and the products contain hydrogen, nitrogen, NH 4 +, a little nitrite, but no NOx, meanwhile NZVI-N was oxidized to Fe 2+. It is a relatively easy and cost-effective method for nitrate removal, so NZVI-N reducing nitrate has a great potential application in nitrate removal of groundwater. © 2012 Elsevier B.V.
Resumo:
Nanoscale MgO powder was synthesized from magnesite ore by a wet chemical method. Acid dissolution was used to obtain a solution from which magnesium containing complexes were precipitated by either oxalic acid or ammonium hydroxide, The transformation of precipitates to the oxide was monitored by thermal analysis and XRD and the transformed powders were studied by electron microscopy. The MgO powders were added as dopants to Bi2SrCa2CuO8 powders and high temperature superconductor thick films were deposited on silver. Addition of suitable MgO powder resulted in increase of critical current density, J(c), from 8,900 Acm(-2) to 13,900 Acm(-2) measured at 77 K and 0 T. The effect of MgO addition was evaluated by XRD, electron microscopy and critical current density measurements. (C) 1998 Elsevier Science B.V.
Resumo:
We demonstrate for the first time the ionic-liquid-mediated synthesis of nanostructured CuTCNQ by the simple immersion of copper in a solution of TCNQ where the viscosity of the medium significantly impacts the corrosion–crystallization process and the final morphology of the material.
Resumo:
We report a nanoscale synthesis technique using nanosecond-duration plasma discharges. Voltage pulses 12.5 kV in amplitude and 40 ns in duration were applied repetitively at 30 kHz across molybdenum electrodes in open ambient air, generating a nanosecond spark discharge that synthesized well-defined MoO 3 nanoscale architectures (i.e. flakes, dots, walls, porous networks) upon polyamide and copper substrates. No nitrides were formed. The energy cost was as low as 75 eV per atom incorporated into a nanostructure, suggesting a dramatic reduction compared to other techniques using atmospheric pressure plasmas. These findings show that highly efficient synthesis at atmospheric pressure without catalysts or external substrate heating can be achieved in a simple fashion using nanosecond discharges.
Resumo:
The possibility of fast, narrow-size/chirality nucleation of thin single-walled carbon nanotubes (SWCNTs) at low, device-tolerant process temperatures in a plasma-enhanced chemical vapor deposition (CVD) is demonstrated using multiphase, multiscale numerical experiments. These effects are due to the unique nanoscale reactive plasma chemistry (NRPC) on the surfaces and within Au catalyst nanoparticles. The computed three-dimensional process parameter maps link the nanotube incubation times and the relative differences between the incubation times of SWCNTs of different sizes/chiralities to the main plasma- and precursor gas-specific parameters and explain recent experimental observations. It is shown that the unique NRPC leads not only to much faster nucleation of thin nanotubes at much lower process temperatures, but also to better selectivity between the incubation times of SWCNTs with different sizes and chiralities, compared to thermal CVD. These results are used to propose a time-programmed kinetic approach based on fast-responding plasmas which control the size-selective, narrow-chirality nucleation and growth of thin SWCNTs. This approach is generic and can be used for other nanostructure and materials systems.
Resumo:
The approach to control the elementary processes of plasma–surface interactions to direct the fluxes of energy and matter at nano- and subnanometer scales is introduced. This ability is related to the solution of the grand challenge of directing energy and matter at nanoscales and is critical for the renewable energy and energy-efficient technologies for a sustainable future development. The examples of deterministic synthesis of self-organized arrays of metastable nanostructures in the size range beyond the reach of the present-day nanofabrication are considered to illustrate this possibility. By using precisely controlled and kinetically fast nanoscale transfer of energy and matter under nonequilibrium conditions and harnessing numerous plasma-specific controls of species creation, delivery to the surface,nucleation, and large-scale self-organization of nuclei and nanostructures, the arrays of metastable nanostructures can be created, arranged, stabilized, and further processed to meet the specific requirements of the envisaged applications.
Resumo:
The main issues related to control of energy and matter in hierarchical low-temperature plasma-solid systems used in nanoscale synthesis and processing are critically examined. A conceptual approach to identify the most effective carriers and transport mechanisms of energy and matter at the nano- and subnanometer scales in plasma-aided nanofabrication is proposed. This approach is highly relevant to the envisaged energy- and matter-efficient plasma-based production of the next-generation advanced nanomaterials for applications in the energy, environment, food, water, health, and security technologies critically needed for a sustainable future.
Resumo:
The results of numerical simulations of nanometer precision distributions of microscopic ion fluxes in ion-assisted etching of nanoscale features on the surfaces of dielectric materials using a self-assembled monolayer of spherical nanoparticles as a mask are presented. It is shown that the ion fluxes to the substrate and nanosphere surfaces can be effectively controlled by the plasma parameters and the external bias applied to the substrate. By proper adjustment of these parameters, the ion flux can be focused onto the areas uncovered by the nanospheres. Under certain conditions, the ion flux distributions feature sophisticated hexagonal patterns, which may lead to very different nanofeature etching profiles. The results presented are generic and suggest viable ways to overcome some of the limitations of the existing plasma-assisted nanolithography.
Resumo:
This contribution provides arguments why and in which cases low-temperature plasmas should be used for nanoscale surface and interface engineering and discusses several advantages offered by plasma-based processes and tools compared to neutral gas fabrication routes. Relevant processes involve nanotexturing (etching, sputtering, nanostructuring, pre-patterning, etc.) and composition/structure control at nanoscales (phases, layering, elemental presence, doping, functionalization, etc.) and complex combinations thereof. A case study in p-Si/n-Si solar cell junction exemplifies a successful use of inductively coupled plasma-assisted RF magnetron sputtering for nanoscale fabrication of a bi-layered stack of unconventionally doped highly-crystalline silicon nanofilms with engineered high-quality interfaces.
Resumo:
We investigate the blend morphology and performance of bulk heterojunction organic photovoltaic devices comprising the donor polymer, pDPP-TNT (poly{3,6-dithiophene-2-yl-2,5-di(2-octyldodecyl)-pyrrolo[3,4-c]pyrrole-1, 4-dione-alt-naphthalene}) and the fullerene acceptor, [70]PCBM ([6,6]-phenyl C71-butyric acid methyl ester). The blend morphology is heavily dependent upon the solvent system used in the fabrication of thin films. Thin films spin-coated from chloroform possess a cobblestone-like morphology, consisting of thick, round-shaped [70]PCBM-rich mounds separated by thin polymer-rich valleys. The size of the [70]PCBM domains is found to depend on the overall film thickness. Thin films spin-coated from a chloroform:dichlorobenzene mixed solvent system are smooth and consist of a network of pDPP-TNT nanofibers embedded in a [70]PCBM-rich matrix. Rinsing the films in hexane selectively removes [70]PCBM and allows for analysis of domain size and purity. It also provides a means for investigating exciton dissociation efficiency through relative photoluminescence yield measurements. Devices fabricated from chloroform solutions show much poorer performance than the devices fabricated from the mixed solvent system; this disparity in performance is seen to be more pronounced with increasing film thickness. The primary cause for the improved performance of devices fabricated from mixed solvents is attributed to the greater donor-acceptor interfacial area and resulting greater capacity for charge carrier generation.
Resumo:
Closed WS2 nanoboxes were formed by topotactic sulfidization of a WO3/WO3 center dot 1/3H(2)O intergrowth precursor. Automated diffraction tomography was used to elucidate the growth mechanism of these unconventional hollow structures. By partial conversion and structural analysis of the products, each of them representing a snapshot of the reaction at a given point in time, the overall reaction can be broken down into a cascade of individual steps and each of them identified with a basic mechanism. During the initial step of sulfidization WO3 center dot 1/3H(2)O transforms into hexagonal WO3 whose surface allows for the epitaxial induction of WS2. The initially formed platelets of WS2 exhibit a preferred orientation with respect to the nanorod surface. In the final step individual layers of WS2 coalesce to form closed shells. In essence, a cascade of several topotactic reactions leads to epitactic induction and formation of closed rectangular hollow boxes made up from hexagonal layers.
Resumo:
The aim of the paper is to give a feasibility study on the material deposition of Nanoscale textured morphology of titanium and titanium oxide layers on titanium and glass substrates. As a recent development in nanoscale deposition, Physical Vapor Deposition (PVD) based DC magnetron sputtering has been the choice for the deposition process. The nanoscale morphology and surface roughness of the samples have been characterized using Atomic Force Microscope (AFM). The surface roughnesses obtained from AFM have been compared using surface profiler. From the results we can say that the roughness values are dependent on the surface roughness of the substrate. The glass substrate was relatively smoother than the titanium plate and hence lower layer roughness was obtained. From AFM a unique nano-pattern of a boomerang shaped titanium oxide layer on glass substrate have been obtained. The boomerang shaped nano-scale pattern was found to be smaller when the layer was deposited at higher sputtering power. This indicated that the morphology of the deposited titanium oxide layer has been influenced by the sputtering power.