889 resultados para N-PROPYLPYRROLIDINIUM BIS(TRIFLUOROMETHANESULFONYL)IMIDE
Resumo:
Ion transport in a polymer-ionic liquid (IL) soft matter composite electrolyte is discussed here in detail in the context of polymer-ionic liquid interaction and glass transition temperature The dispersion of polymethylmetacrylate (PMMA) in 1-butyl-3-methylimidazolium hexafluorophosphate (BMIPF6) and 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide (BMITFSI) resulted in transparent composite electrolytes with a jelly-like consistency The composite ionic conductivity measured over the range -30 C to 60 C was always lower than that of the neat BMITFSI/BMIPF6 and LiTFSI-BMITFSI/LiTFSI-BMIPF6 electrolytes but still very high (>1 mS/cm at 25 degrees C up to 50 wt% PMMA) While addition of LiTFSI to IL does not influence the glass T-g and T-m melting temperature significantly dispersion of PMMA (especially at higher contents) resulted in increase in T-g and disappearance of T-m In general the profile of temperature-dependent ionic conductivity could be fitted to Vogel-Tamman-Fulcher (VTF) suggesting a solvent assisted ion transport However for higher PMMA concentration sharp demarcation of temperature regimes between thermally activated and solvent assisted ion transport were observed with the glass transition temperature acting as the reference point for transformation from one form of transport mechanism to the other Because of the beneficial physico-chemical properties and interesting ion transport mechanism we envisage the present soft matter electrolytes to be promising for application in electrochromic devices (C) 2010 Elsevier Ltd All rights reserved
Resumo:
The solubility of manganese in mercury was determined electrochemically via amalgamation and stripping in the room temperature ionic liquid n-hexyltriethylammonium bis(trifluoromethanesulfonyl)imide, [N-6,N-2,N-2,N-2][NTf2]. A hemispherical mercury electrode was made by electrodepositing mercury onto a planar platinum microelectrode. Cyclic voltammetry of Mn2+ in [N-6,N-2,N-2,N-2][NTf2] at the mercury microhemisphere electrode was investigated at temperatures of 298, 303 and 313 K. The solubility of Mn in Hg was determined on the basis of the charge under the reduction peak (Mn2+ --> Mn-0) and the corresponding reoxidation.
Resumo:
The structure of tris-chloro[2,6-bis(2'-pyridyl)-4-(2'-pyridinium)-1,3,5-triazine]cobalt(II) monohydrate, [Co(C18H13N6)Cl-3]center dot H2O (C2/c (No. 15), a = 7.783(11), b = 22.42(3), c = 11.001(15) angstrom, beta = 90.05(2)degrees), crystallized from the open air reaction of CoCl2 and 2,4,6-tri(2-pyridyl)-1,3,5-triazine in the ionic liquid, N-butyl-N-methyl-pyrrolidinium bis(trifluoromethanesulfonyl)imide is reported. The structure consists of six coordinate cobalt in an octahedral geometry bonded to the tridentate tptz ligand and three chlorines. The non-coordinating pyridyl group in the tptz ligand is protonated (with the protonated nitrogen crystallographically disordered over two possible sites), providing overall charge neutrality for the complex.
Resumo:
Crystal structures of two examples of an important class of ionic liquids, 1,3-dimethylimidazolium and 1,2,3-triethylimidazolium bis(trifluoromethanesulfonyl)imide have been characterized by single crystal X-ray diffraction. The anion in the 1,3-dimethylimidazolium example (mp 22 degreesC), adopts an unusual cis-geometry constrained by bifurcated cation-anion C-H...O hydrogen-bonds from the imidazolium cation to the anion resulting in the formation of fluorous layers within the solid-state structure. In contrast, in the 1,2,3-triethylimidazolium salt (mp 57 degreesC), the ions are discretely packed with only weak C-H...O contacts between the ions close to the van der Waals separation distances, and with the anion adopting the twisted conformation observed for all other examples from the limited set of organic bis( trifluoromethanesulfonyl) imide crystal structures. The structures are discussed in terms of the favorable physical properties that bis(trifluoromethanesulfonyl) imide anions impart in ionic liquids.
Resumo:
This paper reports on the advancement of magnetic ionic liquids (MILs) as stable dispersions of surface-modified gamma-Fe2O3, Fe3O4, and CoFe2O4 magnetic nanoparticles (MNPs) in a hydrophobic ionic liquid, 1-n-butyl 3-methylimidazolium bis(trifluoromethanesulfonyl)imide (BMI.NTf2). The MNPs were obtained via coprecipitation and were characterized using powder X-ray diffraction, transmission electron microscopy, Raman spectroscopy and Fourier transform near-infrared (FT-NIR) spectroscopy, and magnetic measurements. The surface-modified MNPs (SM-MNPs) were obtained via the silanization of the MNPs with the aid of 1-butyl-3[3-(trimethoxysilyl)propyl]imidazolium chloride (BMSPI.Cl). The SM-MNPs were characterized by Raman spectroscopy and Fourier trail: form infrared attenuated total reflectance (FTIR-ATR) spectroscopy and by magnetic measurements. The FTIR-ATR spectra of the SM-MNPs exhibited characteristic absorptions of the imidazolium and those of the Fe-O-Si-C moieties, confirming the presence of BMSPI.Cl on the MNP surface. Thermogravimetric analysis (TGA) showed that the SM-MNPs were modified by at least one BMSPI.Cl monolayer. The MILs were characterized using Raman spectroscopy, differential scanning calorimetry (DSC), and magnetic measurements. The Raman and DSC results indicated an interaction between the SM-MNPs and the IL. This interaction promotes the formation of a supramolecular structure close to the MNP surface that mimics the IL structure and is responsible for the stability of the MIL. Magnetic measurements of the MILs indicated no hysteresis. Superparamagnetic behavior and a saturation magnetization of similar to 22 emu/g could be inferred from the magnetic measurements of a sample containing 50% w/w gamma-Fe2O3 SM-MNP/BMI-NTf2.
Resumo:
In this work authors present the experimental liquid–liquid equilibria (LLE) data of water + ethanol + 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([bmim][Tf2N]) system at different temperatures. The LLE of the system was obtained in the temperature range from 283.2 to 323.2 K. The nonrandom two liquid (NRTL) and universal quasichemical (UNIQUAC) models were used to correlate ternary systems. The equilibrium compositions were successfully correlated by the interaction parameters from both models, however UNIQUAC gave a more accurate correlation. Finally, a study about the solvent capability of ionic liquid was made in order to evaluate the possibility of separating the mixture formed by ethanol and water using that ionic liquid.
Resumo:
Lithium salt solutions of Li(CF3SO2)(2)N, LiTFSI, in a room-temperature ionic liquid (RTIL), 1-butyl-2,3-dimethyl-imidazolium cation, BMMI, and the (CF3SO2)(2)N-, bis(trifluoromethanesulfonyl)imide anion, [BMMI][TFSI], were prepared in different concentrations. Thermal properties, density, viscosity, ionic conductivity, and self-diffusion coefficients were determined at different temperatures for pure [BMMI][TFSI] and the lithium solutions. Raman spectroscopy measurements and computer simulations were also carried out in order to understand the microscopic origin of the observed changes in transport coefficients. Slopes of Walden plots for conductivity and fluidity, and the ratio between the actual conductivity and the Nernst-Einstein estimate for conductivity, decrease with increasing LiTFSI content. All of these studies indicated the formation of aggregates of different chemical nature, as it is corroborated by the Raman spectra. In addition, molecular dynamics (MD) simulations showed that the coordination of Li+ by oxygen atoms of TFSI anions changes with Li+ concentration producing a remarkable change of the RTIL structure with a concomitant reduction of diffusion coefficients of all species in the solutions.
Resumo:
Chemical reaction studies of N-methyl-N-propyl-pyrrolidinium-bis(fluorosulfonyl)imide-based ionic liquid with the lithium metal surface were performed using ab initio molecular dynamics (aMD) simulations and X-ray Photoelectron Spectroscopy (XPS). The molecular dynamics simulations showed rapid and spontaneous decomposition of the ionic liquid anion, with subsequent formation of long-lived species such as lithium fluoride. The simulations also revealed the cation to retain its structure by generally moving away from the lithium surface. The XPS experiments showed evidence of decomposition of the anion, consistent with the aMD simulations and also of cation decomposition and it is envisaged that this is due to the longer time scale for the XPS experiment compared to the time scale of the aMD simulation. Overall experimental results confirm the majority of species suggested by the simulation. The rapid chemical decomposition of the ionic liquid was shown to form a solid electrolyte interphase composed of the breakdown products of the ionic liquid components in the absence of an applied voltage.
Resumo:
The oxidation of bromide has been investigated by linear sweep and cyclic voltammetry at platinum electrodes in the room temperature ionic liquid, 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide, ([C(4)mim][NTf2]), and the conventional aprotic solvent. acetonitrile, (MeCN). Similar voltammetry was observed in both solvents, despite their viscosities differing by more than an order of magnitude. DigiSim(R) was employed to simulate the voltammetric response. The mechanism is believed to involve the direct oxidation of bromide to bromine in a heterogeneous step, followed by a homogenous reaction to form the tribromide anion: 2Br(-) --> Br-2 + 2e(-)
Resumo:
The direct electrochemical oxidation of ammonia has been examined in both the organic solvent dimethylformamide (DMF) and the room temperature ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [EMIM][N(Tf)(2)]. The corresponding voltammetric responses have been shown to be similar in each solvent with a broad oxidative wave occurring upon the introduction of ammonia to the solution and the appearance of a new reductive wave following the oxidation. The oxidative reaction process has been examined and a suitable reaction pathway has been deduced, corresponding to the formation of ammonium cations after oxidation of the ammonia. A linear response of limiting current against vol% ammonia was observed in both DMF and [EMIM][N(Tf)(2)], suggesting potential application for analytical methods.
Resumo:
The reduction of oxygen in the presence of carbon dioxide has been investigated by cyclic voltammetry at a gold microdisk electrode in the two room-temperature ionic liquids 1-ethyl-3-methylimidazolium bis-(trifluoromethylsulfonyl)imide ([EMIM][N(Tf)(2)]) and hexyltriethylammonium bis(trifluoromethylsulfonyl)imide ([N-6222] [N(Tf)(2)]). With increasing levels of CO2, cyclic voltammetry shows an increase in the reductive wave and diminishing of the oxidative wave, indicating that the generated superoxide readily reacts with carbon dioxide. The kinetics of this reaction are investigated in both ionic liquids. The reaction was found to proceed via a DISP1 type mechanism in [EMIM][N(Tf)(2)] with an overall second-order rate constant of 1.4 +/- 0.4 x 10(3) M-1 s(-1). An ECE or DISP1 mechanism was determined to be the most likely pathway for the reaction in [N-6222][N(Tf)(2)], with an overall second-order rate constant of 1.72 +/- 0.45 x 10(3) m(-1) s(-1).
Resumo:
The results detail a novel methodology for the electrochemical determination of ammonia based on its interaction with hydroquinone in DMF. It has been shown that ammonia reversibly removes protons from the hydroquinone molecules, thus facilitating the oxidative process with the emergence of a new wave at less positive potentials. The analytical utility of the proposed methodology has been examined with a linear range from 10 to 95 ppm and corresponding limit-of-detection of 4.2 ppm achievable. Finally, the response of hydroquinone in the presence of ammonia has been examined in the room temperature ionic liquid 1-ethyl-3-methylimidazolium bis(trifluormethylsulfonyl)imide, [EMIM][N(Tf)(2)]. Analogous voltammetric waveshapes to that observed in DMF were obtained, thereby confirming the viability of the method in either DMF or [EMIM][N(Tf)(2)] as solvent. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
The five room temperature ionic liquids: 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([CnMIM][N(Tf)(2)], n = 2, 4, 8, 10) and n-hexyltriethylammonium bis(trifluoromethylsulfonyl)imide ([N-6222][N(Tf)(2)]) were investigated as solvents in which to study the electrochemical oxidation of N,N,N',N'-tetramethyl-para-phenylenediamine (TMPD) and N,N,N',N'-tetrabutyl-paraphenylenediamine (TBPD), using 20 mul micro-samples under vacuum conditions. The effect of dissolved atmospheric gases on the accessible electrochemical window was probed and determined to be less significant than seen previously for ionic liquids containing alternative anions. Chronoamperometric transients recorded at a microdisk electrode were analysed via a process of non-linear curve fitting to yield values for the diffusion coefficients of the electroactive species without requiring a knowledge of their initial concentration. Comparison of experimental and simulated cyclic voltammetry was then employed to corroborate these results and allow diffusion coefficients for the electrogenerated species to be estimated. The diffusion coefficients obtained for the neutral compounds in the five ionic liquids via this analysis were, in units of 10(-11) m(2) s(-1), 2.62, 1.87, 1.12, 1.13 and 0.70 for TMPD. and 1.23, 0.80, 0.40, 0.52 and 0.24 for TBPD (listed using the same order for the ionic liquids as stated above). The most significant consequence of changing the cationic component of the ionic liquid was found to be its effect on the solvent viscosity; the diffusion coefficient of each species was found to be approximately inversely proportional to viscosity across the series of ionic liquids, in accordance with Walden's rule. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Ionic liquids have been used to support a range of magnesium-and copper-based bis(oxazoline) complexes for the enantioselective Diels-Alder reaction between N-acryloyloxazolidinone and cyclopentadiene. Compared with reaction performed in dichloromethane or diethyl ether, an enhancement in ee is observed with a large increase in reaction rate. In addition, for non-sterically hindered bis(oxazoline) ligands, that is, phenyl functionalised ligands, a reversal in configuration is found in the ionic liquid, 1-ethyl-3-methylimidazolium bis[(trifluoromethanesulfonyl)imide], compared with molecular solvents. Supported ionic liquid phase catalysts have also been developed using surface-modified silica which show good reactivity and enantioselectivity for the case of the magnesium-based bis(oxazoline) complexes. Poor ees and conversion were observed for the analogous copper-based systems. Some drop in ee was found on supporting the catalyst due a drop in the rate of reaction and, therefore, an increase in the contribution from the uncatalysed a chiral reaction.