459 resultados para N-HETEROCYCLIC CARBENE


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fluorenyl modified N-heterocyclic carbene ligated rare earth metal bis(alkyl) complexes, (Flu-NHC)Ln(CH2SiMe3)2 (Flu-NHC = (C13H8CH2CH2(NCHCCHN)C6H2Me3-2,4,6); Ln = Sc (1a); Ln = Y (1b); Ln = Ho (1c); Ln = Lit (1d)), were synthesized and fully characterized by NMR and X-ray diffraction analyses. Complexes Ib-d with the activation of (AlBu3)-Bu-i and [Ph3C][B(C6F5)4] exhibited high activity, medium syndio-but remarkably high 3,4-regio-selectivity, and the unprecedented livingness for the polymerization of isoprene. Such distinguished catalytic performances could be maintained under various monomer-to-initiator ratios (500-5000) and broad polymerization temperatures (25-80 degrees C).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rare earth metal bis(alkyl) complexes attached by fluorenyl modified N-heterocyclic carbene (NHC) (Flu-NHC)Ln(CH2SiMe3)(2) (Flu-NHC = (C13H8CH2CH2(NCHCCHN)C6H2Me3-2,4,6); Ln = Sc (2a); Y (2b); Ho (2c); Lu (2d)), ((tBu)Flu-NHC)Ln(CH2SiMe3)(2) ((tBu)Flu-NHC = 2,7-(Bu2C13H6CH2CH2)-Bu-t(NCHCCHN)C6H2Me3-2,4,6; Ln = Sc (1a); Lu (1d)) and attached by indenyl modified N-heterocyclic carbene (Ind-NHC)Ln(CH2SiMe3)(2) (Ind-NHC = C9H6CH2CH2(NCHCCHN)C6H2Me3-2,4,6; Ln = Sc (3a); Lu (3d)), under the activation of (AlBu3)-Bu-i and [Ph3C][B(C6F5)(4)], showed varied catalytic activities toward homo- and copolymerization of ethylene and norbornene. Among which the scandium complexes, in spite of ligand type, exhibited medium to high catalytic activity for ethylene polymerization (10(5) g mol(Sc)(-1) h(-1) atm(-1)), but all were almost inert to norbornene polymerization. Remarkably, higher activity was found for the copolymerization of ethylene and norbornene when using Sc based catalytic systems, which reached up to 5 x 10(6) g mol(Sc)(-1) h(-1) atm(-1) with 2a. The composition of the isolated copolymer was varying from random to alternating according to the feed ratio of the two monomers (r(E) = 4.1, r(NB) = 0.013).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Treatment of indenyl-modified imidazolium bromide [C9H7CH2CH2(NCHCHN(C6H2Me3-2,4,6)CH)Br] ((IndH-NHC-H)Br) with rare earth metal tetra(alkyl) lithium (Ln(CH2SiMe3)(4)Li(THF)(4)) or with (trimethylsilylmethyl)lithium (LiCH2SiMe3) and rare earth metal tris(alkyl)s (Ln(CH2SiMe3)(3)(THF)(2)) sequentially afforded the first NHC-stabilized monomeric rare earth metal bis(alkyl) complexes (Ind-NHC)Ln(CH2SiMe3)(2) (1, Ln = Y; 2, Ln = Lu; 3, Ln = Sc) via double-deprotonation reactions. Complexes 1-3 are THF-free isostructural monomers. The monoanionic Ind-NHC species bond to the central metal ion in a eta(5):kappa(1) constrained geometry configuration (CGC) mode, which combine with the two cis-located alkyl moieties to form a tetrahedron ligand core, leading to the chirality of the complexes. Under the presence of activators AlEt3 and [Ph3C][B(C6F5)(4)], complex 2 showed catalytic activity toward the polymerization of isoprene to afford 3,4-regulated polyisoprene (91%).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Le présent mémoire décrit la synthèse et l’utilité de complexes Cu-NHC. En premier lieu, la synthèse de complexes de cuivre porteurs de ligand(s) de type carbène-N-hétérocyclique (NHC) via une génération décarboxylative de carbènes sera présentée. En effet, de précédents rapports font état de l’utilisation de carboxylates d’imidazol(in)ium en tant que précurseurs carbéniques sous conditions thermolytiques. Ainsi, la présente étude montre l’utilisation de ces espèces zwitterioniques pour la synthèse de complexes de cuivre(I) mono- et bis-NHC comportant divers substituants et contre-ions. Une seconde partie du projet se concentrera sur l’évaluation de complexes Cu-NHC en tant que catalyseurs pour la synthèse de 2,2’-binaphtols via une réaction de couplage oxydatif de naphtols. L’objectif de ce projet de recherche est d’étudier les effets de variations structurales de différents complexes Cu-NHC afin de construire un processus catalytique plus efficace. Les effets de la structure du catalyseur sur la réaction de couplage ont été évalués en variant son contre-ion, le nombre de ligands NHC se coordonnant au cuivre, ainsi que la nature des substituants du ligand.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Les ligands de carbènes N-hétérocycliques (NHC) qui possèdent une symétrie C1 attirent beaucoup l’attention dans la littérature. Le présent projet de recherche propose de synthétiser une nouvelle série de ligands NHC C1-symétriques avec deux groupements N-alkyles qui exploitent un relais chiral. Un protocole modulaire et efficace pour la synthèse des sels d’imidazolium chiraux qui servent comme préligands pour les NHC a été développé. Quelques-uns de ces nouveaux ligands ont été installés sur le cuivre et de l’or, créant de nouveaux complexes chiraux. Les nouveaux complexes à base de cuivre ont été évalués comme catalyseurs pour le couplage oxydatif de 2-naphthols. Les ligands C1-symmétriques ont fourni des meilleurs rendements que les ligands C2-symmétriques. Au cours de l’optimisation, des additifs ont été évalués; les additifs à base de pyridine ont fourni des énantiosélectivités modérées tandis que les additifs à base de malonate ont donné des meilleurs rendements de la réaction de couplage oxydatif. Ultérieurement, les additifs à base de malonate ont été appliqués envers l’hétérocouplage de 2-naphthols. Le partenaire de couplage qui est riche en électrons est normalement en grand excès à cause de sa tendance à dégrader. Avec le bénéfice de l’additif, les deux partenaires de couplage peuvent être utilisés dans des quantités équivalentes. La découverte de l’effet des additifs a permis le développement d’un protocole général pour l’hétérocouplage de 2-naphthols.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The research performed in the framework of this Master Thesis has been directly inspired by the recent work of an organometallic research group led by Professor Maria Cristina Cassani on a topic related to the structures, dynamics and catalytic activity of N-heterocyclic carbene-amide rhodium(I) complexes1. A series of [BocNHCH2CH2ImR]X (R = Me, X = I, 1a’; R = Bz, X = Br, 1b’; R = trityl, X = Cl, 1c’) amide-functionalized imidazolium salts bearing increasingly bulky N-alkyl substituents were synthetized and characterized. Subsequently, these organic precursors were employed in the synthesis of silver(I) complexes as intermediate compounds on a way to rhodium(I) complexes [Rh(NBD)X(NHC)] (NHC = 1-(2-NHBoc-ethyl)-3-R-imidazolin-2-ylidene; X = Cl, R = Me (3a’), R = Bz (3b’), R = trityl (3c’); X = I, R = Me (4a’)). VT NMR studies of these complexes revealed a restricted rotation barriers about the metal-carbene bond. However, while the rotation barriers calculated for the complexes in which R = Me, Bz (3a’,b’ and 4a) matched the experimental values, this was not true in the trityl case 3c’, where the experimental value was very similar to that obtained for compound 3b’ and much smaller with respect to the calculated one. In addition, the energy barrier derived for 3c’ from line shape simulation showed a strong dependence on the temperature, while the barriers measured for 3a’,b’ did not show this effect. In view of these results and in order to establish the reasons for the previously found inconsistency between calculated and experimental thermodynamic data, the first objective of this master thesis was the preparation of a series of rhodium(I) complexes [Rh(NBD)X(NHC)] (NHC = 1-benzyl-3-R-imidazolin-2-ylidene; X = Cl, R = Me, Bz, trityl, tBu), containing the benzyl substituent as a chiral probe, followed by full characterization. The second objective of this work was to investigate the catalytic activity of the new rhodium compounds in the hydrosilylation of terminal alkynes for comparison purposes with the reported complexes. Another purpose of this work was to employ the prepared N-heterocyclic ligands in the synthesis of iron(II)-NHC complexes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of imidazolium salts of the type [BocNHCH2CH2ImR]X (Boc = t-Bu carbamates; Im = imidazole) (R = Me, X = I, 1a; R = Bn, X = Br, 1b; R = Trityl, X = Cl, 1c) and [BnImR’]X (R’ = Me, X = Br, 1d; R’ = Bn, X = Br, 1e; R’ = Trityl, X = Cl, 1g; R’ = tBu, X = Br, 1h) bearing increasingly bulky substituents were synthetized and characterized. Subsequently, these precursors were employed in the synthesis of silver(I)-N-heterocyclic (NHC) complexes as transmetallating reagents for the preparation of rhodium(I) complexes [RhX(NBD)(NHC)] (NHC = 1-(2-NHBoc-ethyl)-3-R-imidazolin-2-ylidene; X = Cl; R = Me, 4a; R = Bn, 4b; R = Trityl, 4c; X = I, R = Me, 5a; NHC = 1-Bn-3-R’-imidazolin-2-ylidene; X = Cl; R’ = Me, 4d, R’ = Bn, 4e, R’ = Trityl, 4g; R’ = tBu, 4h). VT NMR studies of these complexes revealed a restricted rotation barriers about the metal-carbene bond. While the rotation barriers calculated for the complexes in which R = Me, Bn (4a,b,d,e and 5a) matched the experimental values, this was not true for the complexes 4c,g, bearing a trityl group for which the values are much smaller than the calculated ones. Energy barriers for 4c,g, derived from a line shape simulation, showed a strong dependence on the temperature while for 4h the rotational energy barrier is stopped at room temperature. The catalytic activity of the new rhodium compounds was investigated in the hydrosilylation of terminal alkynes and in the addition of phenylboronic acid to benzaldehyde. The imidazolium salts 1d,e were also employed in the synthesis of new iron(II)-NHC complexes. Finally, during a six-months stay at the University of York a new ligand derived from Norharman was prepared and employed in palladium-mediated cross-coupling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

N-Heterocyclic carbene coated Au and Pd nanoparticles have been prepared by a ligand exchange reaction; although carbenes quantitatively displaced the thioether and phosphine ligands from the nanoparticle surface, the resultant nanoparticles spontaneously leached metal complexes and aggregated in solution. © 2009 The Royal Society of Chemistry and the Centre National de la Recherche Scientifique.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The preparation of imidazolium and benzimidazolium salts with hydroxyl or carboxylate functions has been achieved using straightforward synthetic pathways. These salts in combination with palladium(II) acetate give active catalytic systems for Suzuki reaction. A comparative study has been performed, which has revealed that both the heterocycle and the functional group are important for the catalytic activity and stability of the catalyst.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The olefin metathesis reaction has found many applications in polymer synthesis and more recently in organic synthesis. The use of single component late metal olefin metathesis catalysts has expanded the scope of the reaction to many new applications and has allowed for detailed study of the catalytic species.

The metathesis of terminal olefins of different steric bulk, different geometry as well as electronically different para-substituted styrenes was studied with the ruthenium based metathesis initiators, trans-(PCy3)2Cl2Ru=CHR, of different carbene substituents. Increasing olefin bulk was found to slow the rate of reaction and trans internal olefins were found to be slower to react than cis internal olefins. The kinetic product of a11 reactions was found to be the alkylidene, rather than the methylidene, suggesting the intermediacy of a 2,4-metallacycle. The observed effects were used to explain the mechanism of ring opening cross metathesis and acyclic diene metathesis polymerization. No linear electronic effects were observed.

In studying the different carbene ligands, a series of ester-carbene complexes was synthesized. These complexes were found to be highly active for the metathesis of olefinic substrates, including acrylates and trisubstituted olefins. In addition, the estercarbene moiety is thermodynamically high in energy. As a result, these complexes react to ring-open cyclohexene by metathesis to alleviate the thermodynamic strain of the ester-carbene ligand. However, ester-carbene complexes were found to be thermolytically unstable in solution.

Thermolytic decomposition pathways were studied for several ruthenium-carbene based olefin metathesis catalysts. Substituted carbenes were found to decompose through bimolecular pathways while the unsubstituted carbene (the methylidene) was found to decompose unimolecularly. The stability of several derivatives of the bis-phosphine ruthenium based catalysts was studied for its implications to ring-closing metathesis. The reasons for the activity and stability of the different ruthenium-based catalysts is discussed.

The difference in catalyst activity and initiation is discussed for the bis-phosphine based and mixed N-heterocyclic carbene/phosphine based ruthenium olefin metathesis catalysts. The mixed ligand catalysts initiate far slower than the bis-phosphine catalysts but are far more metathesis active. A scheme is proposed to explain the difference in reactivity between the two types of catalysts.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The first xylene-bridged bis(N-heterocyclic carbene) (bis(NHC))-ligated CCC-pincer rare-earth metal dibromides (PBNHC)LnBr(2)(THF) (PBNHC = 2,6-(2,4,6-Me3C6H2NCHCHNCCH2)(2)C6H3; 1: Ln = Sc; 2: Ln = Lu; 3: Lu = Sm) were prepared by in situ treatment of a THF suspension of 2,6-bis(1-mesitylimidazolium methyl)-1-bromobenzene dibromides ((PB-NHC-Br) center dot 2HBr) and lanthanide trichlorides (LnCl(3)) with dropwise addition of nBuLi at room temperature.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Piano stool complexes of rhodium and iridium activated by fluorinated and non-fluorinated N-heterocyclic carbene (NHC) ligands were shown to be catalysts for racemization in the one-pot chemoenzymic dynamic kinetic resolution (DKR) of secondary alcohols. Excellent conversions and good enantioselectivities were observed for alkyl aryl and dialkyl secondary alcohols.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Scission of a supramolecular polymer-metal complex can be carried out using collapsing cavitation bubbles created by ultrasound. Although the most plausible scission mechanism of the coordinative bonds is through mechanical force, the influence of radicals and high hot-spot temperatures on scission has to be considered. A silver(I)-N-heterocyclic carbene complex was exposed to 20 kHz ultrasound in argon, nitrogen, methane, and isobutane saturated toluene. Scission percentages were almost equal under argon, nitrogen, and methane. Radical production differs by a factor of 10 under these gases, indicating that radical production is not a significant contributor to the scission process. A model to describe the displacement of the bubble wall, strain rates, and temperature in the gas shows that critical strain rates for coil-to-stretch transition, needed for scission, are achieved at reactor temperatures of 298 K, an acoustic pressure of 1.2 x 10(5) Pa, and an acoustic frequency of 20 kHz. Lower scission percentages were measured under isobutane, which also shows lower strain rates in model simulations. The activation of the polymer-metal complexes in toluene under the influence of ultrasound occurs through mechanical force.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A dialkylborenium ion stabilized by an N-heterocyclic carbene has been prepared for the first time by reaction of IMes-9-BBN-H with triflic acid. The ion-separated nature of the borenium ion was confirmed by 1H and 19F diffusion ordered NMR spectroscopy.