954 resultados para Números irracionales
Resumo:
El libro forma parte de un proyecto que fue aprobado en el curso escolar 1999/2000 titulado: estudio de los números para alumnos con deficiencias auditivas, llevado a cabo en el IES Juan Carlos I de Murcia
Resumo:
A través de un viaje iconográfico donde el lector puede observar la cotidianidad que la naturaleza presenta, el autor devela, de una manera fascinante, la presencia y el carácter mágico de los números irracionales en el entorno de la vida común y corriente, mediados por la inconmensurable sinergia didáctica de las ciencias naturales y las matemáticas. La obra se convierte en un texto para ser leído por cualquier público; la sencillez de la exposición del tema, tanto en lo lingüístico como en lo visual, seduce al lector desde las primeras páginas y lo invita a recrearse con la presencia de la geometría y los fractales naturales, esta suerte de circunstancia hace que el contenido del texto sea una buena excusa para que maestros y estudiantes encuentren siempre la invitación a poner en escena una buena estrategia para apropiarse de la enseñanza y aprendizaje de los números irracionales.
Resumo:
En el presente trabajo se expone un manera novedosa para generar números irracionales a partir del concepto de cortadura relativo a una serie aritmética natural e infinita. Se enuncia un teorema respectivo.
Resumo:
El presente trabajo expone ciertos aspectos de los números racionales e irracionales que generalmente son poco trabajados en las clases sobre los números reales en el bachillerato. La célebre paradoja de Aquiles y la tortuga sirve de pretexto para analizar a los números racionales y su periodicidad vía la noción de serie. Por lo que respecta a los números irracionales, la comparación del lado de un cuadrado y su diagonal nos sirven para introducir el concepto de inconmensurabilidad. Se presenta también un pequeño software, a manera de demo para apoyo de los temas tratados.
Resumo:
La enseñanza y el aprendizaje formalizado de los números irracionales en la formación inicial de profesores de secundaria son problemáticos. Un análisis histórico y epistemológico de la noción de número irracional, sirve de base para enmarcar un estudio empírico, con estudiantes para profesor, que indaga el proceso de construcción de la noción de cardinalidad del conjunto de los números irracionales y la densidad de en R\Q en R. El estudio se realiza por medio de algunos elementos teóricos del enfoque ontosemiótico del conocimiento de y de la instrucción matemáticos. La identificación, por parte del estudiante, de la cardinalidad de conjuntos infinitos, hace posible la emergencia de fenómenos relativos a los cardinales transfinitos, determinándose diferentes tipos de errores y conflictos cognitivos.
Resumo:
El objetivo de este artículo es presentar varias pruebas visuales sobre la irracionalidad de raíz de 2, las cuales no son muy conocidas comparadas con otras pruebas, como por ejemplo, las demostraciones del teorema de Pitágoras. Además, esas demostraciones pueden ser útiles como una alternativa a la clásica demostración griega y de esta forma se intentará llamar la atención de los alumnos.
Resumo:
El número de oro Φ=1,618... es al plano, lo que el número plástico P=1,2471... es al espacio. Ver esto es el objetivo final de este clip. Pero permitan primero una breve visita a la familia de los números metálicos en la cual destaca con luz propia el áureo.
Resumo:
En este artículo se presentan algunas experiencias sobre la aproximación intuitiva en geometría y sus implicaciones en el cálculo aproximado del número pi en la ESO. El proceso se gradúa en torno a cuatro actividades. En las dos primeras se aproxima experimentalmente el número Pi y se pretende descubrir el grado de móviles de los alumnos para enfrentarse, desde el punto de vista intuitivo, a los procesos geométricos de aproximación. En las dos últimas se hace una estimación de Pi, en un caso encontrando una secuencia de números irracionales convergente a ese número, y el otro, a partir de una simplificación del método utilizado por Arquímedes, que permite además dar una demostración diferente de la habitual.
Resumo:
La sección áurea puede ser un tema al que hacer referencia en distintos momentos y etapas del currículo escolar. Es idóneo para mostrar la relación entre las matemáticas y otras asignaturas del ámbito de humanidades y, de esta forma, contribuir a destruir el muro que tradicionalmente separa a los alumnos en «de letras» y «de ciencias». En este articulo, estudiando el ritmo de intensidad de la poesía clásica española, descubrimos cómo en los metros fundamentales y más utilizados por los autores de todos los tiempos podemos encontrar bien razones áureas, bien otras no menos bellas.
Resumo:
Se estudian algunos aspectos del quehacer matemático de Luca Pacioli en el siglo XV y su influencia sobre diversos aspectos culturales.
Experiencia sobre la aproximación intuitiva en Geometría : una aproximación del número pi en la ESO.
Resumo:
Resumen basado en el de la publicación
Resumo:
Se hace un recorrido por la figura de William Rowan Hamilton. Además de aspectos biográficos, se hace referencia a sus principales teorías relacionadas con las matemáticas como son los números irracionales, el álgebra de parejas o los cuaterniones.
Resumo:
Ofrecer elementos básicos que permitan, a quien lo utilice, establecer la comparación de fenómenos de acuerdo con criterios de presencia-ausencia, paralelismo-oposición, etc., para analizar las obras de los autores Escher y Penrose. Definir los núcleos conceptuales básicos en el teselado del plano. Describir, con ejemplos, modelos periódicos y aperiódicos de la división regular del plano. Distinguir en una estructura las principales transformaciones y las leyes que rigen éstas. Valorar, desde el punto de vista estético, los modelos de Escher y Penrose. Relacionar dichos modelos con las teorías científicas que han ilustrado. Cuatro cursos de COU. Se trata de un audiovisual didáctico, se han escogido los modelos de Escher y Penrose porque están llenos de sentido singular, diferente que permiten analizar y describir un tema tan árido como la división regular del plano. Se ha dividido el audiovisual en tres partes. Primero se presentan 7 modelos de Escher para describir las transformaciones en la división cíclica del plano. Análisis de los grabados de Escher en forma de caleidociclos con la repetición infinita de motivos con un número finito de figuras, jugando con la asociación finito-infinito. Presentación de las figuras históricas de Penrose, se estudian los 7 modelos, haciendo incapié en el modelo del carretón infinito, la relación de los rombos y el descubrimiento de los cuasicristales. Obras de Escher y Penrose. Escher es un estructuralista típico. Su visión del mundo es pluralista y no significa caos sino orden. El lenguaje visual de su obra es tradicional, realista y comprensible. Está matemáticamente demostrado que es posible construir edificios ordenados a larga distancia con una simetría cualquiera, esto significa para la cristalografía en el mundo mineral, lo que significó para las matemáticas la introducción de los números irracionales. Los embaldosados, históricos y tridimensionales, Penrose no se pueden describir en términos de una celda unitaria sencilla. Las estructuras bidimensionales de Penrose tienen simetría de quinto orden de largo alcance. Los embaldosados de Penrose, representan un nuevo enfoque de la noción de cristal, se pueden formar muchos decágonos o polígonos regulares de diez lados.
Resumo:
En este trabajo se hace una reflexión crítica acerca de los errores en el uso y manejo de los números racionales e irracionales, en estudiantes del grado noveno de dos instituciones educativas de Antioquia, y las consecuentes dificultades que estos generan en la construcción de los números reales, se hace necesaria para detectarlos, identificarlos y categorizarlos de manera sistemática con la taxonomía realizada por Radatz, esto con el propósito de generar reflexiones en vía de la comprensión del aprendizaje y de la enseñanza de los mismos, en la etapa escolar y de futuras propuestas didácticas. La reflexión se fundamenta en la noción de obstáculo epistemológico dada por Gastón Bachelard y extrapolada a la Didáctica de la matemática por Guy Brousseau y Luis Rico entre otros, dando cuenta de lo problemático que resulta el aprendizaje de los números racionales e irracionales, no como resultado de la incapacidad o ignorancia manifiesta en los estudiantes; sino más bien, como evidencia de posibles obstáculos epistemológicos, propios de la construcción conceptual de dichos números, que pueden ser rastreados a lo largo de la historia y que fueron detectados en el presente trabajo por errores repetitivos y persistentes en el uso que hacen los estudiantes de ellos cuando realizan actividades específicas con ellos en el aula de clase, sin descartar que en muchas ocasiones se encuentran entremezclados con obstáculos de tipo didáctico.
Resumo:
Unidad didáctica diseñada para ser impartida en el tercer curso de la ESO cuyos contenidos desarrollan siete de los diez objetivos generales de la enseñanza de las Matemáticas en este nivel. Está concebida de forma disciplinar aunque tiene cierta relación con la humanística y utiliza experiencias de la vida real, la música, juegos, cálculo mental, formando un amplio recorrido relacionado con el empleo del número. Su estructura responde a dos fases: la primera, de utilización de números naturales y enteros con la jerarquía de las operaciones; la segunda, de utilización de números fraccionarios, decimales e irracionales. En el apartado de material para el alumnado se incluyen actividades propias de la unidad didáctica, de recuperación y de ampliación.