953 resultados para Números fracionários


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A criação dos números fracionários se deu em um determinado momento que os números naturais não eram mais suficientes para moderar as situações do dia a dia. Assim, os números naturais expressam a idéia de quantidade e os números fracionários a de quantidade e medida. É nesse sentido que o número fracionário é representado por a/b, onde a é a quantidade e b a medida. As frações expressam dois tipos de grandezas (coisas que podemos contar ou medir, como por exemplo, massa, temperatura, tempo): contínuas e discretas. Na sala de aula, as frações deveriam ser trabalhadas, em um primeiro momento, a partir da observação, manipulação e comparação. E só posteriormente o professor poderia trabalhar os aspectos formais do assunto. As frações expressam diversas idéias matemáticas na tentativa de representar situações do cotidiano, algumas dessas ideias são: partição (parcela), quociente (resultado de uma divisão), medida, probabilidade e número (a/b). Cumpre, ainda, acrescentar que as frações equivalentes são aquelas que representam ou significam um mesmo resultado.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Esta pesquisa tem como um dos seus objetivos investigar como os professores de Matemática expressam sua compreensão sobre números fracionários tendo em vista proporcionar ao estudante conhecimento significativo. A partir da revisão da literatura este estudo foi circunscrito em duas vias: uma endógena onde trago as contribuições de Kieren (1976) e Nunes et al (2003) compreendendo números fracionários a partir dos significados parte-todo, número, operador multiplicativo, medida e quociente. Esses significados foram assumidos a partir de Vergnaud (1990) como um conjunto de situações que dão sentido ao conceito de números fracionários. A outra via, exógena, por meio das contribuições da sociologia do conhecimento segundo Fleck (1976) e da Matemática Cultural por Alan Bishop (1990). Essas duas vias foram selecionadas no intuito de responder: Que compreensão os professores de Matemática manifestam ao enfrentarem um conjunto de situações envolvendo números fracionários? Participaram deste estudo vinte e um professores das redes pública e privada com mais de três anos de experiência no sexto ano do Ensino Fundamental. O estudo contou com a aplicação de um teste diagnóstico com no mínimo duas secções para cada participante contendo quinze questões envolvendo os significados de números fracionários. Os dados foram analisados mediante as categorias: invariante operatório, os cinco significados, dinâmica comunicativa. Como resultado foi possível indicar que do ponto de vista endógeno os professores compreendem números fracionários na dependência dos significados parte-todo e operador multiplicativo, e do ponto de vista exógeno o Círculo Exotérico (os professores participantes) não compreende o objeto em questão como metaconceito, diferentemente do Círculo Esotérico (produções acadêmicas), reforçando assim, a dinâmica comunicativa intracoletiva, que não favorece a escola em geral, nem às práticas pedagógicas em particular, o desenvolvimento de valores como abertura para o ensino de Matemática.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Relatório de Estágio apresentado à Escola Superior de Educação de Lisboa para obtenção de grau de mestre em Ensino do 1.º e do 2.º Ciclo do Ensino Básico

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This research aimed to investigate the possibility to develop the process of teaching and learning of the division of rational numbers with guided tasks in interpretation of measure. Adopted as methodology the Didactic Engineering and a didactic sequence in order to develop the work with students of High School. Participated of training sessions twelve students of one state school of Porto Barreiro city - Paran´a. The results of application of the didactic engineering suggest the importance of utilization of guided tasks in interpretation of measure, since strengthened the understanding, on the part of students, the concept of division of fractional rational numbers and contributed for them develop the comprehension of others questions associated to the concept of rational numbers, such as order, equivalence and density.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este trabalho aborda, de maneira bem sucinta e objetiva, a história da evolução dos números desde o primeiro risco em um osso, até chegar na forma atual como os conhecemos. Ao longo de aproximadamente 30.000 anos de existência, os sistemas de numeração, suas bases e representações sofreram inúmeras modificações, adequando-se ao contexto histórico vigente. Podemos citar a mentalidade científica da época, a necessidade da conquista de territórios, religiões e crenças e necessidades básicas da vida cotidiana. Deste modo, mostramos uma corrente histórica que tenta explicar como e porque a ideia de número se modifica com o tempo, sempre tendo em vista os fatores que motivaram tais mudanças e quais benefícios (ou malefícios) trouxeram consigo. Com um capítulo dedicado a cada uma das mais importantes civilizações que contribuíram para o crescimento da matemática e, sempre que possível, em ordem cronológica de acontecimentos, o leitor consegue ter uma boa ideia de como uma civilização influencia a outra e como um povo posterior pôde apoiar-se nos conhecimentos adquiridos dos antepassados para produzir seus próprios algorítimos e teoremas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este é um trabalho de pesquisa sobre um conjunto de números (irracionais) que é pouco trabalhado no ensino básico de matemática. Foi uma procura muito interessante e enriquecedora, pois encontrei matemáticos e historiadores com visões bem diferentes. Muitos deles não aceitavam este novo conjunto. Para Leopold Kronecker, só existia o conjunto dos números inteiros. Já para Cantor e Dedekind, o aparecimento dos irracionais foi extremamente importante para o desenvolvimento da matemática, abrindo novos horizontes. Menciono aqui um pouco da vida e da obra de alguns matemáticos que se envolveram com os números irracionais. Tratamos ainda da descoberta dos incomensuráveis, ou seja, como iniciou-se o problema da incomensurabilidade, e do retângulo áureo e sua importância em outras áreas. O trabalho mostra também dois grupos de números que não são mencionados quando ensinamos equações algébricas, que são os números algébricos e os números transcendentes, assim como teoremas essenciais para a prova da transcendência dos irracionais especiais e . Por fim, proponho uma aula para uma turma do 3 ano do Ensino Médio com o objetivo de mostrar a irracionalidade de alguns números, usando os teoremas pertinentes

Relevância:

20.00% 20.00%

Publicador:

Resumo:

En este trabajo utilizamos los razonamientos que llevan a cabo doce alumnos de Secundaria durante la resolución de una tarea matemática para detectar los errores en que incurren y las dificultades que encuentran en su ejecución. Se les propone la tarea en un contexto de entrevista semiestructurada en la que se guía a los alumnos por el camino a seguir. Entre los datos que se obtienen, se encuentran los errores aparecidos en el desarrollo de la tarea. El análisis de dichos errores se ha hecho siguiendo las clasificaciones de Evans (González, 1998) y Radatz (1979), y se conecta dichos errores con dificultades específicas siguiendo la clasificación de Socas (1997). Se concluye este trabajo con algunas reflexiones que conside-ramos interesantes para profesionales de la enseñanza de las matemáticas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La unidad didáctica que exponemos a continuación aborda los elementos que consideramos ne-cesarios para la solución de las dificultades que los estudiantes de grado séptimo encuentran al resolver situaciones que involucran la adición y sustracción de números enteros. Presentamos la descripción del problema a tratar, la manera en la que lo abordamos y los principales resultados de nuestra experiencia. Posteriormente, en el cuerpo de este documento, presentamos la funda-mentación del diseño de la unidad didáctica, seguido del análisis didáctico para la adición y sus-tracción de números enteros, la descripción y justificación del diseño de la unidad didáctica, la evaluación de la implementación, y el balance de la experiencia y reflexiones hacia el futuro. Fi-nalizamos presentando nuestras conclusiones.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Los números de Fibonacci han cautivado por muchos años al ser humano por sus aplicaciones en la vida cotidiana y en otras disciplinas. En este documento se presenta el origen de los números de Fibonacci, sus propiedades y su contribución a las matemáticas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soluciones a los ejercicios propuestos en el anterior NÚMEROS, con especial incidencia en la metodología de su resolución. Análisis de los problemas de la XX Olimpiada Nacional Matemática. Propuesta de nuevos enunciados. Ejercicios de diferentes niveles y contenidos.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

En este artículo se muestran varias poesías que tienen a los números como protagonistas, escritas por autores tanto famosos como menos conocidos, españoles o extranjeros, con el objetivo de facilitar al profesor de Matemáticas de los niveles de Primaria, Secundaria y Bachillerato un no muy habitual recurso metodológico que pueda utilizar en sus clases para conseguir, por una parte, un mayor interés, gusto y motivación de sus alumnos por la asignatura, y por otra, para tratar las competencias socio-culturales, lingüísticas e idiomáticas que debe desarrollar en sus clases, permitiéndole de este modo la promoción de la interdisciplinaridad entre Lengua y Matemáticas, tan deseable para la formación global de sus alumnos.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Los números usualmente se han trabajado, tanto en los cursos de Primaria como en Secundaria, como instrumentos para realizar actividades en el aula sin tener en cuenta, en muchos casos, que se encuentran en el entorno y se utilizan usualmente en la vida cotidiana. Por ello se presentarán actividades extraídas de situaciones reales en que los números estén en contextos cotidianos que potencien la discusión, la toma de decisiones y que establezcan un enlace entre los centros educativos y el entorno. De esa manera se pretende reflexionar sobre el concepto de número en la práctica educativa diaria con la esperanza de que se considere un instrumento que facilite a los estudiantes vivir en su propio entorno y les ayude a desarrollarse como ciudadanos.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El presente trabajo expone ciertos aspectos de los números racionales e irracionales que generalmente son poco trabajados en las clases sobre los números reales en el bachillerato. La célebre paradoja de Aquiles y la tortuga sirve de pretexto para analizar a los números racionales y su periodicidad vía la noción de serie. Por lo que respecta a los números irracionales, la comparación del lado de un cuadrado y su diagonal nos sirven para introducir el concepto de inconmensurabilidad. Se presenta también un pequeño software, a manera de demo para apoyo de los temas tratados.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ya hace unos años A.K. Dewdney en su libro 200% de nada, se hacia eco de los curiosos usos sociales de los números donde se exagera la precisión de los mismos, en casos donde no tiene sentido (1.234.567 manifestantes, 345.674 peces en el lago, 14 horas 45 minutos 34 segundos andan- do,...), con vistas a dar una versión “mas científica” de la información que se desea transmitir. A este fenómeno lo bautizó Dewdney como “dramadigits”. Una conocida historia de John Allen Paulos es la del vigilante de un museo de ciencias naturales que estando ante un gran esqueleto de dinosaurio fue preguntado por unos visitantes sobre la antigüedad de aquellos restos y contestó con una sorprendente precisión: “90.000.006 años”. Extrañados los visitantes sobre los 6 años pidieron explicaciones al paciente guarda y éste respondió “cuando llegué aquí me dijeron que el dinosaurio tenia 90.000.000 de años y de esto ya hace 6 años”. En este clip me gustaría compartir algunas historias cuyo común denominador es este extraño sentido de la precisión.