965 resultados para Musculoskeletal system.
Resumo:
The current epidemic of paediatric obesity is consistent with a myriad of health-related comorbid conditions. Despite the higher prevalence of orthopaedic conditions in overweight children, a paucity of published research has considered the influence of these conditions on the ability to undertake physical activity. As physical activity participation is directly related to improvements in physical fitness, skeletal health and metabolic conditions, higher levels of physical activity are encouraged, and exercise is commonly prescribed in the treatment and management of childhood obesity. However, research has not correlated orthopaedic conditions, including the increased joint pain and discomfort that is commonly reported by overweight children, with decreases in physical activity. Research has confirmed that overweight children typically display a slower, more tentative walking pattern with increased forces to the hip, knee and ankle during 'normal' gait. This research, combined with anthropometric data indicating a higher prevalence of musculoskeletal malalignment in overweight children, suggests that such individuals are poorly equipped to undertake certain forms of physical activity. Concomitant increases in obesity and decreases in physical activity level strongly support the need to better understand the musculoskeletal factors associated with the performance of motor tasks by overweight and obese children.
Resumo:
Induction therapy of promyelocytic leukemia with all-trans retinoic acid is a standard therapy despite significant side-effects. The most important, the "retinoic acid syndrome", consists of a hyperinflammatory reaction with capillary leakage (edema, pleural, and pericardial effusion), infiltration of myeloid cells into internal organs and systemic signs of inflammation. We describe here two cases of another hyperinflammatory reaction during all-trans retinoic acid therapy, the Sweet's syndrome, consisting of infiltrates of the skin and internal organs by neutrophilic granulocytes. Fever, painful erythematous cutaneous plaques, prominent musculoskeletal involvement (myositis, fasciitis), a sterile pulmonary infiltration and intercurrent proteinuria characterized the clinical course of all-trans retinoic acid-associated Sweet's syndrome. Treatment with glucocorticoids led to resolution of the syndrome within 48 h. Three other cases of all-trans retinoic acid-associated Sweet's syndrome without involvement of internal organs, prominent on our cases, were published previously. Recognition of ATRA-associated Sweet's syndrome is of practical importance.
Resumo:
Two major difficulties facing widespread clinical implementation of existing Tissue Engineering (TE) strategies for the treatment of musculoskeletal disorders are (1) the cost, space and time required for ex vivo culture of a patient’s autologous cells prior to re-implantation as part of a TE construct, and (2) the potential risks and availability constraints associated with transplanting exogenous (foreign) cells. These hurdles have led to recent interest in endogenous TE strategies, in which the regenerative potential of a patient’s own cells is harnessed to promote tissue regrowth without ex vivo cell culture. This article provides a focused perspective on key issues in the development of endogenous TE strategies, progress to date, and suggested future research directions toward endogenous repair and regeneration of musculoskeletal tissues and organs.
Resumo:
Disorders localized to the musculoskeletal system are a common problem among dental personnel. This study has the aim of surveying epidemiological studies reporting positive associations between dental practice and musculoskeletal disorders (MSKDs). The focus was to evaluate the size of reported risk increase and the extent to what alternative causal explanations were considered. Reports with significant links (p value .05) were systematically selected from 2 electronic databases. Twenty-five studies were identified. Risk measures were reported in 8 studies, and all of them presented weak associations. The impact of at least 1 competing explanations was analyzed in 32% of studies, but adjustment was considered not adequate in half of them. The evidence on dentistry as a profession with potential risk for development of MSKDs remains questionable. Further research is needed to more carefully elucidate the risk and the impact of MSKDs in this particular occupational group.
Resumo:
Background. The surgical treatment of dysfunctional hips is a severe condition for the patient and a costly therapy for the public health. Hip resurfacing techniques seem to hold the promise of various advantages over traditional THR, with particular attention to young and active patients. Although the lesson provided in the past by many branches of engineering is that success in designing competitive products can be achieved only by predicting the possible scenario of failure, to date the understanding of the implant quality is poorly pre-clinically addressed. Thus revision is the only delayed and reliable end point for assessment. The aim of the present work was to model the musculoskeletal system so as to develop a protocol for predicting failure of hip resurfacing prosthesis. Methods. Preliminary studies validated the technique for the generation of subject specific finite element (FE) models of long bones from Computed Thomography data. The proposed protocol consisted in the numerical analysis of the prosthesis biomechanics by deterministic and statistic studies so as to assess the risk of biomechanical failure on the different operative conditions the implant might face in a population of interest during various activities of daily living. Physiological conditions were defined including the variability of the anatomy, bone densitometry, surgery uncertainties and published boundary conditions at the hip. The protocol was tested by analysing a successful design on the market and a new prototype of a resurfacing prosthesis. Results. The intrinsic accuracy of models on bone stress predictions (RMSE < 10%) was aligned to the current state of the art in this field. The accuracy of prediction on the bone-prosthesis contact mechanics was also excellent (< 0.001 mm). The sensitivity of models prediction to uncertainties on modelling parameter was found below 8.4%. The analysis of the successful design resulted in a very good agreement with published retrospective studies. The geometry optimisation of the new prototype lead to a final design with a low risk of failure. The statistical analysis confirmed the minimal risk of the optimised design over the entire population of interest. The performances of the optimised design showed a significant improvement with respect to the first prototype (+35%). Limitations. On the authors opinion the major limitation of this study is on boundary conditions. The muscular forces and the hip joint reaction were derived from the few data available in the literature, which can be considered significant but hardly representative of the entire variability of boundary conditions the implant might face over the patients population. This moved the focus of the research on modelling the musculoskeletal system; the ongoing activity is to develop subject-specific musculoskeletal models of the lower limb from medical images. Conclusions. The developed protocol was able to accurately predict known clinical outcomes when applied to a well-established device and, to support the design optimisation phase providing important information on critical characteristics of the patients when applied to a new prosthesis. The presented approach does have a relevant generality that would allow the extension of the protocol to a large set of orthopaedic scenarios with minor changes. Hence, a failure mode analysis criterion can be considered a suitable tool in developing new orthopaedic devices.
Resumo:
The determination of skeletal loading conditions in vivo and their relationship to the health of bone tissues, remain an open question. Computational modeling of the musculoskeletal system is the only practicable method providing a valuable approach to muscle and joint loading analyses, although crucial shortcomings limit the translation process of computational methods into the orthopedic and neurological practice. A growing attention focused on subject-specific modeling, particularly when pathological musculoskeletal conditions need to be studied. Nevertheless, subject-specific data cannot be always collected in the research and clinical practice, and there is a lack of efficient methods and frameworks for building models and incorporating them in simulations of motion. The overall aim of the present PhD thesis was to introduce improvements to the state-of-the-art musculoskeletal modeling for the prediction of physiological muscle and joint loads during motion. A threefold goal was articulated as follows: (i) develop state-of-the art subject-specific models and analyze skeletal load predictions; (ii) analyze the sensitivity of model predictions to relevant musculotendon model parameters and kinematic uncertainties; (iii) design an efficient software framework simplifying the effort-intensive phases of subject-specific modeling pre-processing. The first goal underlined the relevance of subject-specific musculoskeletal modeling to determine physiological skeletal loads during gait, corroborating the choice of full subject-specific modeling for the analyses of pathological conditions. The second goal characterized the sensitivity of skeletal load predictions to major musculotendon parameters and kinematic uncertainties, and robust probabilistic methods were applied for methodological and clinical purposes. The last goal created an efficient software framework for subject-specific modeling and simulation, which is practical, user friendly and effort effective. Future research development aims at the implementation of more accurate models describing lower-limb joint mechanics and musculotendon paths, and the assessment of an overall scenario of the crucial model parameters affecting the skeletal load predictions through probabilistic modeling.
Resumo:
Diffusion-weighted imaging (DWI) is an established diagnostic tool with regards to the central nervous system (CNS) and research into its application in the musculoskeletal system has been growing. It has been shown that DWI has utility in differentiating vertebral compression fractures from malignant ones, assessing partial and complete tears of the anterior cruciate ligament (ACL), monitoring tumor response to therapy, and characterization of soft-tissue and bone tumors. DWI is however less useful in differentiating malignant vs. infectious processes. As of yet, no definitive qualitative or quantitative properties have been established due to reasons ranging from variability in acquisition protocols to overlapping imaging characteristics. Even with these limitations, DWI can still provide clinically useful information, increasing diagnostic accuracy and improving patient management when magnetic resonance imaging (MRI) findings are inconclusive. The purpose of this article is to summarize recent research into DWI applications in the musculoskeletal system.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
"From the longitudinal sample of disability insurance applicants."
Resumo:
Background: Adolescent idiopathic scoliosis is a complex three-dimensional deformity, involving a lateral deformity in the coronal plane and axial rotation of the vertebrae in the transverse plane. Gravitational loading plays an important biomechanical role in governing the coronal deformity, however, less is known about how they influence the axial deformity. This study investigates the change in three-dimensional deformity of a series of scoliosis patients due to compressive axial loading. Methods: Magnetic resonance imaging scans were obtained and coronal deformity (measured using the coronal Cobb angle) and axial rotations measured for a group of 18 scoliosis patients (Mean major Cobb angle was 43.4 o). Each patient was scanned in an unloaded and loaded condition while compressive loads equivalent to 50% body mass were applied using a custom developed compressive device. Findings: The mean increase in major Cobb angle due to compressive loading was 7.4 o (SD 3.5 o). The most axially rotated vertebra was observed at the apex of the structural curve and the largest average intravertebral rotations were observed toward the limits of the coronal deformity. A level-wise comparison showed no significant difference between the average loaded and unloaded vertebral axial rotations (intra-observer error = 2.56 o) or intravertebral rotations at each spinal level. Interpretation: This study suggests that the biomechanical effects of axial loading primarily influence the coronal deformity, with no significant change in vertebral axial rotation or intravertebral rotation observed between the unloaded and loaded condition. However, the magnitude of changes in vertebral rotation with compressive loading may have been too small to detect given the resolution of the current technique.
Resumo:
Aim: to describe what health problems patients attending emergency department with and whether this changed over time. Methods: Electronic data was retrieved from EDIS (Emergency Department Information System) and HBCIS (Hospital Based Clinical Information System) in two hospitals in Queensland in the period 2001-2009. The ICD-10 code of patient's diagnosis was then extrapolated and then group into ICD-10 chapters, such that the health problem can be presented. Results: Among the specific health problems, Chapter XIX 'Injury and poisoning' ranked number one consistently (ranging from 22.1% to 31.2% of the total presentations) in both the urban and remote hospitals in Queensland. The top ten specific presenting health problems in both the urban and remote hospital include Chapter XI 'Digestive system', Chapter XIV 'Genitourinary system', Chapter IX 'Circulatory system', and Chapter XIII 'Musculoskeletal system and connective tissue'. Chapter X 'Respiratory system' made the top ten presenting Chapters in both hospitals, but ranked much higher (number four consistently for the eight years, ranging from 6.8% to 8.3%) in the remote hospital. Chapter XV 'Pregnancy childbirth and puerperium' made to the top ten in the urban hospital only while Chapter XII 'Skin and subcutaneous tissue', Chapter I 'Infectious and parasitic diseases' made the top ten in the remote hospital only. Conclusion: The number one health problem presenting to both the urban and remote hospitals in Queensland is Chapter XIX 'Injury and poisoning', and it did not change in the period 211 - 2009.
Resumo:
High power, high frequency pulsed electric fields known as pulsed power (PP) has been applied recently in biology and medicine. However, little attention has been paid to investigate the application of pulse power in musculoskeletal system and its possible effect on functional behavior and biomechanical properties of bone tissue. This paper presents the first research investigating whether or not PP can be applied safely on bone tissue as a stimuli and what will be the possible effect of these signals on the characteristics of cortical bone by comparing the mechanical properties of this type of bone pre and post expose to PP and in comparison with the control samples. A positive buck‑boost converter was applied to generate adjustable high voltage, high frequency pulses (up to 500 V and 10 kHz). The functional behavior of bone in response to pulse power excitation was elucidated by applying compressive loading until failure. The stiffness, failure stress (strength) and the total fracture energy (bone toughness) were determined as a measure of the main bone characteristics. Furthermore, an ultrasonic technique was applied to determine and comprise bone elasticity before and after pulse power stimulation. The elastic property of cortical bone samples appeared to remain unchanged following exposure to pulse power excitation for all three orthogonal directions obtained from ultrasonic technique and similarly from the compression test. Nevertheless, the compressive strength and toughness of bone samples were increased when they were exposed to 66 h of high power pulsed electromagnetic field compared to the control samples. As the toughness and the strength of the cortical bone tissue are directly associated with the quality and integrity of the collagen matrix whereas its stiffness is primarily related to bone mineral content these overall results may address that although, the pulse power stimulation can influence the arrangement or the quality of the collagen network causing the bone strength and toughness augmentation, it apparently did not affect the mineral phase of the cortical bone material. The results also confirmed that the indirect application of high power pulsed electric field at 500 V and 10 kHz through capacitive coupling method was safe and did not destroy the bone tissue construction.