990 resultados para Multiscale Models


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ernst Mach observed that light or dark bands could be seen at abrupt changes of luminance gradient in the absence of peaks or troughs in luminance. Many models of feature detection share the idea that bars, lines, and Mach bands are found at peaks and troughs in the output of even-symmetric spatial filters. Our experiments assessed the appearance of Mach bands (position and width) and the probability of seeing them on a novel set of generalized Gaussian edges. Mach band probability was mainly determined by the shape of the luminance profile and increased with the sharpness of its corners, controlled by a single parameter (n). Doubling or halving the size of the images had no significant effect. Variations in contrast (20%-80%) and duration (50-300 ms) had relatively minor effects. These results rule out the idea that Mach bands depend simply on the amplitude of the second derivative, but a multiscale model, based on Gaussian-smoothed first- and second-derivative filtering, can account accurately for the probability and perceived spatial layout of the bands. A key idea is that Mach band visibility depends on the ratio of second- to first-derivative responses at peaks in the second-derivative scale-space map. This ratio is approximately scale-invariant and increases with the sharpness of the corners of the luminance ramp, as observed. The edges of Mach bands pose a surprisingly difficult challenge for models of edge detection, but a nonlinear third-derivative operation is shown to predict the locations of Mach band edges strikingly well. Mach bands thus shed new light on the role of multiscale filtering systems in feature coding. © 2012 ARVO.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Computational models in physiology often integrate functional and structural information from a large range of spatio-temporal scales from the ionic to the whole organ level. Their sophistication raises both expectations and scepticism concerning how computational methods can improve our understanding of living organisms and also how they can reduce, replace and refine animal experiments. A fundamental requirement to fulfil these expectations and achieve the full potential of computational physiology is a clear understanding of what models represent and how they can be validated. The present study aims at informing strategies for validation by elucidating the complex interrelations between experiments, models and simulations in cardiac electrophysiology. We describe the processes, data and knowledge involved in the construction of whole ventricular multiscale models of cardiac electrophysiology. Our analysis reveals that models, simulations, and experiments are intertwined, in an assemblage that is a system itself, namely the model-simulation-experiment (MSE) system. Validation must therefore take into account the complex interplay between models, simulations and experiments. Key points for developing strategies for validation are: 1) understanding sources of bio-variability is crucial to the comparison between simulation and experimental results; 2) robustness of techniques and tools is a pre-requisite to conducting physiological investigations using the MSE system; 3) definition and adoption of standards facilitates interoperability of experiments, models and simulations; 4) physiological validation must be understood as an iterative process that defines the specific aspects of electrophysiology the MSE system targets, and is driven by advancements in experimental and computational methods and the combination of both.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Solidification processes are complex in nature, involving multiple phases and several length scales. The properties of solidified products are dictated by the microstructure, the mactostructure, and various defects present in the casting. These, in turn, are governed by the multiphase transport phenomena Occurring at different length scales. In order to control and improve the quality of cast products, it is important to have a thorough understanding of various physical and physicochemical phenomena Occurring at various length scales. preferably through predictive models and controlled experiments. In this context, the modeling of transport phenomena during alloy solidification has evolved over the last few decades due to the complex multiscale nature of the problem. Despite this, a model accounting for all the important length scales directly is computationally prohibitive. Thus, in the past, single-phase continuum models have often been employed with respect to a single length scale to model solidification processing. However, continuous development in understanding the physics of solidification at various length scales oil one hand and the phenomenal growth of computational power oil the other have allowed researchers to use increasingly complex multiphase/multiscale models in recent. times. These models have allowed greater understanding of the coupled micro/macro nature of the process and have made it possible to predict solute segregation and microstructure evolution at different length scales. In this paper, a brief overview of the current status of modeling of convection and macrosegregation in alloy solidification processing is presented.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Chemical engineers are turning to multiscale modelling to extend traditional modelling approaches into new application areas and to achieve higher levels of detail and accuracy. There is, however, little advice available on the best strategy to use in constructing a multiscale model. This paper presents a starting point for the systematic analysis of multiscale models by defining several integrating frameworks for linking models at different scales. It briefly explores how the nature of the information flow between the models at the different scales is influenced by the choice of framework, and presents some restrictions on model-framework compatibility. The concepts are illustrated with reference to the modelling of a catalytic packed bed reactor. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A systematic goal-driven top-down modelling methodology is proposed that is capable of developing a multiscale model of a process system for given diagnostic purposes. The diagnostic goal-set and the symptoms are extracted from HAZOP analysis results, where the possible actions to be performed in a fault situation are also described. The multiscale dynamic model is realized in the form of a hierarchical coloured Petri net by using a novel substitution place-transition pair. Multiscale simulation that focuses automatically on the fault areas is used to predict the effect of the proposed preventive actions. The notions and procedures are illustrated on some simple case studies including a heat exchanger network and a more complex wet granulation process.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Common Loon (Gavia immer) is considered an emblematic and ecologically important example of aquatic-dependent wildlife in North America. The northern breeding range of Common Loon has contracted over the last century as a result of habitat degradation from human disturbance and lakeshore development. We focused on the state of New Hampshire, USA, where a long-term monitoring program conducted by the Loon Preservation Committee has been collecting biological data on Common Loon since 1976. The Common Loon population in New Hampshire is distributed throughout the state across a wide range of lake-specific habitats, water quality conditions, and levels of human disturbance. We used a multiscale approach to evaluate the association of Common Loon and breeding habitat within three natural physiographic ecoregions of New Hampshire. These multiple scales reflect Common Loon-specific extents such as territories, home ranges, and lake-landscape influences. We developed ecoregional multiscale models and compared them to single-scale models to evaluate model performance in distinguishing Common Loon breeding habitat. Based on information-theoretic criteria, there is empirical support for both multiscale and single-scale models across all three ecoregions, warranting a model-averaging approach. Our results suggest that the Common Loon responds to both ecological and anthropogenic factors at multiple scales when selecting breeding sites. These multiscale models can be used to identify and prioritize the conservation of preferred nesting habitat for Common Loon populations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis studies molecular dynamics simulations on two levels of resolution: the detailed level of atomistic simulations, where the motion of explicit atoms in a many-particle system is considered, and the coarse-grained level, where the motion of superatoms composed of up to 10 atoms is modeled. While atomistic models are capable of describing material specific effects on small scales, the time and length scales they can cover are limited due to their computational costs. Polymer systems are typically characterized by effects on a broad range of length and time scales. Therefore it is often impossible to atomistically simulate processes, which determine macroscopic properties in polymer systems. Coarse-grained (CG) simulations extend the range of accessible time and length scales by three to four orders of magnitude. However, no standardized coarse-graining procedure has been established yet. Following the ideas of structure-based coarse-graining, a coarse-grained model for polystyrene is presented. Structure-based methods parameterize CG models to reproduce static properties of atomistic melts such as radial distribution functions between superatoms or other probability distributions for coarse-grained degrees of freedom. Two enhancements of the coarse-graining methodology are suggested. Correlations between local degrees of freedom are implicitly taken into account by additional potentials acting between neighboring superatoms in the polymer chain. This improves the reproduction of local chain conformations and allows the study of different tacticities of polystyrene. It also gives better control of the chain stiffness, which agrees perfectly with the atomistic model, and leads to a reproduction of experimental results for overall chain dimensions, such as the characteristic ratio, for all different tacticities. The second new aspect is the computationally cheap development of nonbonded CG potentials based on the sampling of pairs of oligomers in vacuum. Static properties of polymer melts are obtained as predictions of the CG model in contrast to other structure-based CG models, which are iteratively refined to reproduce reference melt structures. The dynamics of simulations at the two levels of resolution are compared. The time scales of dynamical processes in atomistic and coarse-grained simulations can be connected by a time scaling factor, which depends on several specific system properties as molecular weight, density, temperature, and other components in mixtures. In this thesis the influence of molecular weight in systems of oligomers and the situation in two-component mixtures is studied. For a system of small additives in a melt of long polymer chains the temperature dependence of the additive diffusion is predicted and compared to experiments.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In der vorliegenden Arbeit werden verschiedene Wassermodelle in sogenannten Multiskalen-Computersimulationen mit zwei Auflösungen untersucht, in atomistischer Auflösung und in einer vergröberten Auflösung, die als "coarse-grained" bezeichnet wird. In der atomistischen Auflösung wird ein Wassermolekül, entsprechend seiner chemischen Struktur, durch drei Atome beschrieben, im Gegensatz dazu wird ein Molekül in der coarse-grained Auflösung durch eine Kugel dargestellt.rnrnDie coarse-grained Modelle, die in dieser Arbeit vorgestellt werden, werden mit verschiedenen coarse-graining Methoden entwickelt. Hierbei kommen hauptsächlich die "iterative Boltzmann Inversion" und die "iterative Monte Carlo Inversion" zum Einsatz. Beides sind struktur-basierte Ansätze, die darauf abzielen bestimmte strukturelle Eigenschaften, wie etwa die Paarverteilungsfunktionen, des zugrundeliegenden atomistischen Systems zu reproduzieren. Zur automatisierten Anwendung dieser Methoden wurde das Softwarepaket "Versatile Object-oriented Toolkit for Coarse-Graining Applications" (VOTCA) entwickelt.rnrnEs wird untersucht, in welchem Maße coarse-grained Modelle mehrere Eigenschaftenrndes zugrundeliegenden atomistischen Modells gleichzeitig reproduzieren können, z.B. thermodynamische Eigenschaften wie Druck und Kompressibilität oder strukturelle Eigenschaften, die nicht zur Modellbildung verwendet wurden, z.B. das tetraedrische Packungsverhalten, welches für viele spezielle Eigenschaft von Wasser verantwortlich ist.rnrnMit Hilfe des "Adaptive Resolution Schemes" werden beide Auflösungen in einer Simulation kombiniert. Dabei profitiert man von den Vorteilen beider Modelle:rnVon der detaillierten Darstellung eines räumlich kleinen Bereichs in atomistischer Auflösung und von der rechnerischen Effizienz des coarse-grained Modells, die den Bereich simulierbarer Zeit- und Längenskalen vergrössert.rnrnIn diesen Simulationen kann der Einfluss des Wasserstoffbrückenbindungsnetzwerks auf die Hydration von Fullerenen untersucht werden. Es zeigt sich, dass die Struktur der Wassermoleküle an der Oberfläche hauptsächlich von der Art der Wechselwirkung zwischen dem Fulleren und Wasser und weniger von dem Wasserstoffbrückenbindungsnetzwerk dominiert wird.rn

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A two-time scale stochastic approximation algorithm is proposed for simulation-based parametric optimization of hidden Markov models, as an alternative to the traditional approaches to ''infinitesimal perturbation analysis.'' Its convergence is analyzed, and a queueing example is presented.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

High velocity oxyfuel (HVOF) thermal spraying is one of the most significant developments in the thermal spray industry since the development of the original plasma spray technique. The first investigation deals with the combustion and discrete particle models within the general purpose commercial CFD code FLUENT to solve the combustion of kerosene and couple the motion of fuel droplets with the gas flow dynamics in a Lagrangian fashion. The effects of liquid fuel droplets on the thermodynamics of the combusting gas flow are examined thoroughly showing that combustion process of kerosene is independent on the initial fuel droplet sizes. The second analysis copes with the full water cooling numerical model, which can assist on thermal performance optimisation or to determine the best method for heat removal without the cost of building physical prototypes. The numerical results indicate that the water flow rate and direction has noticeable influence on the cooling efficiency but no noticeable effect on the gas flow dynamics within the thermal spraying gun. The third investigation deals with the development and implementation of discrete phase particle models. The results indicate that most powder particles are not melted upon hitting the substrate to be coated. The oxidation model confirms that HVOF guns can produce metallic coating with low oxidation within the typical standing-off distance about 30cm. Physical properties such as porosity, microstructure, surface roughness and adhesion strength of coatings produced by droplet deposition in a thermal spray process are determined to a large extent by the dynamics of deformation and solidification of the particles impinging on the substrate. Therefore, is one of the objectives of this study to present a complete numerical model of droplet impact and solidification. The modelling results show that solidification of droplets is significantly affected by the thermal contact resistance/substrate surface roughness.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Computational models represent a highly suitable framework, not only for testing biological hypotheses and generating new ones but also for optimising experimental strategies. As one surveys the literature devoted to cancer modelling, it is obvious that immense progress has been made in applying simulation techniques to the study of cancer biology, although the full impact has yet to be realised. For example, there are excellent models to describe cancer incidence rates or factors for early disease detection, but these predictions are unable to explain the functional and molecular changes that are associated with tumour progression. In addition, it is crucial that interactions between mechanical effects, and intracellular and intercellular signalling are incorporated in order to understand cancer growth, its interaction with the extracellular microenvironment and invasion of secondary sites. There is a compelling need to tailor new, physiologically relevant in silico models that are specialised for particular types of cancer, such as ovarian cancer owing to its unique route of metastasis, which are capable of investigating anti-cancer therapies, and generating both qualitative and quantitative predictions. This Commentary will focus on how computational simulation approaches can advance our understanding of ovarian cancer progression and treatment, in particular, with the help of multicellular cancer spheroids, and thus, can inform biological hypothesis and experimental design.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vacuum Arc Remelting (VAR) is the accepted method for producing homogeneous, fine microstructures that are free of inclusions required for rotating grade applications. However, as ingot sizes are increasing INCONEL 718 becomes increasingly susceptible to defects such as freckles, tree rings, and white spots increases for large diameter billets. Therefore, predictive models of these defects are required to allow optimization of process parameters. In this paper, a multiscale and multi-physics model is presented to predict the development of microstructures in the VAR ingot during solidification. At the microscale, a combined stochastic nucleation approach and finite difference solution of the solute diffusion is applied in the semi-solid zone of the VAR ingot. The micromodel is coupled with a solution of the macroscale heat transfer, fluid flow and electromagnetism in the VAR process through the temperature, pressure and fluid flow fields. The main objective of this study is to achieve a better understanding of the formation of the defects in VAR by quantifying the influence of VAR processing parameters on grain nucleation and dendrite growth. In particular, the effect of different ingot growth velocities on the microstructure formation was investigated. It was found that reducing the velocity produces significantly more coarse grains.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nano- and meso-scale simulation of chemical ordering kinetics in nano-layered L1(0)-AB binary intermetallics was performed. In the nano- (atomistic) scale Monte Carlo (MC) technique with vacancy mechanism of atomic migration implemented with diverse models for the system energetics was used. The meso-scale microstructure evolution was, in turn, simulated by means of a MC procedure applied to a system built of meso-scale voxels ordered in particular L1(0) variants. The voxels were free to change the L1(0) variant and interacted with antiphase-boundary energies evaluated within the nano-scale simulations. The study addressed FePt thin layers considered as a material for ultra-high-density magnetic storage media and revealed metastability of the L1(0) c-variant superstructure with monoatomic planes parallel to the (001)-oriented layer surface and off-plane easy magnetization. The layers, originally perfectly ordered in the c-variant, showed discontinuous precipitation of a- and b-L1(0)-variant domains running in parallel with homogeneous disordering (i.e. generation of antisite defects). The domains nucleated heterogeneously on the free monoatomic Fe surface of the layer, grew inwards its volume and relaxed towards an equilibrium microstructure of the system. Two

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Incorporating ecological processes and animal behaviour into Species Distribution Models (SDMs) is difficult. In species with a central resting or breeding place, there can be conflict between the environmental requirements of the 'central place' and foraging habitat. We apply a multi-scale SDM to examine habitat trade-offs between the central place, roost sites, and foraging habitat in . Myotis nattereri. We validate these derived associations using habitat selection from behavioural observations of radio-tracked bats. A Generalised Linear Model (GLM) of roost occurrence using land cover variables with mixed spatial scales indicated roost occurrence was positively associated with woodland on a fine scale and pasture on a broad scale. Habitat selection of radio-tracked bats mirrored the SDM with bats selecting for woodland in the immediate vicinity of individual roosts but avoiding this habitat in foraging areas, whilst pasture was significantly positively selected for in foraging areas. Using habitat selection derived from radio-tracking enables a multi-scale SDM to be interpreted in a behavioural context. We suggest that the multi-scale SDM of . M. nattereri describes a trade-off between the central place and foraging habitat. Multi-scale methods provide a greater understanding of the ecological processes which determine where species occur and allow integration of behavioural processes into SDMs. The findings have implications when assessing the resource use of a species at a single point in time. Doing so could lead to misinterpretation of habitat requirements as these can change within a short time period depending on specific behaviour, particularly if detectability changes depending on behaviour. © 2011 Gesellschaft für ökologie.