974 resultados para Multiprocessor scheduling problems
Resumo:
The multiprocessor task graph scheduling problem has been extensively studied asacademic optimization problem which occurs in optimizing the execution time of parallelalgorithm with parallel computer. The problem is already being known as one of the NPhardproblems. There are many good approaches made with many optimizing algorithmto find out the optimum solution for this problem with less computational time. One ofthem is branch and bound algorithm.In this paper, we propose a branch and bound algorithm for the multiprocessor schedulingproblem. We investigate the algorithm by comparing two different lower bounds withtheir computational costs and the size of the pruned tree.Several experiments are made with small set of problems and results are compared indifferent sections.
Resumo:
The problem of scheduling a parallel program presented by a weighted directed acyclic graph (DAG) to the set of homogeneous processors for minimizing the completion time of the program has been extensively studied as academic optimization problem which occurs in optimizing the execution time of parallel algorithm with parallel computer.In this paper, we propose an application of the Ant Colony Optimization (ACO) to a multiprocessor scheduling problem (MPSP). In the MPSP, no preemption is allowed and each operation demands a setup time on the machines. The problem seeks to compose a schedule that minimizes the total completion time.We therefore rely on heuristics to find solutions since solution methods are not feasible for most problems as such. This novel heuristic searching approach to the multiprocessor based on the ACO algorithm a collection of agents cooperate to effectively explore the search space.A computational experiment is conducted on a suit of benchmark application. By comparing our algorithm result obtained to that of previous heuristic algorithm, it is evince that the ACO algorithm exhibits competitive performance with small error ratio.
Resumo:
Many large coal mining operations in Australia rely heavily on the rail network to transport coal from mines to coal terminals at ports for shipment. Over the last few years, due to the fast growing demand, the coal rail network is becoming one of the worst industrial bottlenecks in Australia. As a result, this provides great incentives for pursuing better optimisation and control strategies for the operation of the whole rail transportation system under network and terminal capacity constraints. This PhD research aims to achieve a significant efficiency improvement in a coal rail network on the basis of the development of standard modelling approaches and generic solution techniques. Generally, the train scheduling problem can be modelled as a Blocking Parallel- Machine Job-Shop Scheduling (BPMJSS) problem. In a BPMJSS model for train scheduling, trains and sections respectively are synonymous with jobs and machines and an operation is regarded as the movement/traversal of a train across a section. To begin, an improved shifting bottleneck procedure algorithm combined with metaheuristics has been developed to efficiently solve the Parallel-Machine Job- Shop Scheduling (PMJSS) problems without the blocking conditions. Due to the lack of buffer space, the real-life train scheduling should consider blocking or hold-while-wait constraints, which means that a track section cannot release and must hold a train until the next section on the routing becomes available. As a consequence, the problem has been considered as BPMJSS with the blocking conditions. To develop efficient solution techniques for BPMJSS, extensive studies on the nonclassical scheduling problems regarding the various buffer conditions (i.e. blocking, no-wait, limited-buffer, unlimited-buffer and combined-buffer) have been done. In this procedure, an alternative graph as an extension of the classical disjunctive graph is developed and specially designed for the non-classical scheduling problems such as the blocking flow-shop scheduling (BFSS), no-wait flow-shop scheduling (NWFSS), and blocking job-shop scheduling (BJSS) problems. By exploring the blocking characteristics based on the alternative graph, a new algorithm called the topological-sequence algorithm is developed for solving the non-classical scheduling problems. To indicate the preeminence of the proposed algorithm, we compare it with two known algorithms (i.e. Recursive Procedure and Directed Graph) in the literature. Moreover, we define a new type of non-classical scheduling problem, called combined-buffer flow-shop scheduling (CBFSS), which covers four extreme cases: the classical FSS (FSS) with infinite buffer, the blocking FSS (BFSS) with no buffer, the no-wait FSS (NWFSS) and the limited-buffer FSS (LBFSS). After exploring the structural properties of CBFSS, we propose an innovative constructive algorithm named the LK algorithm to construct the feasible CBFSS schedule. Detailed numerical illustrations for the various cases are presented and analysed. By adjusting only the attributes in the data input, the proposed LK algorithm is generic and enables the construction of the feasible schedules for many types of non-classical scheduling problems with different buffer constraints. Inspired by the shifting bottleneck procedure algorithm for PMJSS and characteristic analysis based on the alternative graph for non-classical scheduling problems, a new constructive algorithm called the Feasibility Satisfaction Procedure (FSP) is proposed to obtain the feasible BPMJSS solution. A real-world train scheduling case is used for illustrating and comparing the PMJSS and BPMJSS models. Some real-life applications including considering the train length, upgrading the track sections, accelerating a tardy train and changing the bottleneck sections are discussed. Furthermore, the BPMJSS model is generalised to be a No-Wait Blocking Parallel- Machine Job-Shop Scheduling (NWBPMJSS) problem for scheduling the trains with priorities, in which prioritised trains such as express passenger trains are considered simultaneously with non-prioritised trains such as freight trains. In this case, no-wait conditions, which are more restrictive constraints than blocking constraints, arise when considering the prioritised trains that should traverse continuously without any interruption or any unplanned pauses because of the high cost of waiting during travel. In comparison, non-prioritised trains are allowed to enter the next section immediately if possible or to remain in a section until the next section on the routing becomes available. Based on the FSP algorithm, a more generic algorithm called the SE algorithm is developed to solve a class of train scheduling problems in terms of different conditions in train scheduling environments. To construct the feasible train schedule, the proposed SE algorithm consists of many individual modules including the feasibility-satisfaction procedure, time-determination procedure, tune-up procedure and conflict-resolve procedure algorithms. To find a good train schedule, a two-stage hybrid heuristic algorithm called the SE-BIH algorithm is developed by combining the constructive heuristic (i.e. the SE algorithm) and the local-search heuristic (i.e. the Best-Insertion- Heuristic algorithm). To optimise the train schedule, a three-stage algorithm called the SE-BIH-TS algorithm is developed by combining the tabu search (TS) metaheuristic with the SE-BIH algorithm. Finally, a case study is performed for a complex real-world coal rail network under network and terminal capacity constraints. The computational results validate that the proposed methodology would be very promising because it can be applied as a fundamental tool for modelling and solving many real-world scheduling problems.
Resumo:
Computer resource allocation represents a significant challenge particularly for multiprocessor systems, which consist of shared computing resources to be allocated among co-runner processes and threads. While an efficient resource allocation would result in a highly efficient and stable overall multiprocessor system and individual thread performance, ineffective poor resource allocation causes significant performance bottlenecks even for the system with high computing resources. This thesis proposes a cache aware adaptive closed loop scheduling framework as an efficient resource allocation strategy for the highly dynamic resource management problem, which requires instant estimation of highly uncertain and unpredictable resource patterns. Many different approaches to this highly dynamic resource allocation problem have been developed but neither the dynamic nature nor the time-varying and uncertain characteristics of the resource allocation problem is well considered. These approaches facilitate either static and dynamic optimization methods or advanced scheduling algorithms such as the Proportional Fair (PFair) scheduling algorithm. Some of these approaches, which consider the dynamic nature of multiprocessor systems, apply only a basic closed loop system; hence, they fail to take the time-varying and uncertainty of the system into account. Therefore, further research into the multiprocessor resource allocation is required. Our closed loop cache aware adaptive scheduling framework takes the resource availability and the resource usage patterns into account by measuring time-varying factors such as cache miss counts, stalls and instruction counts. More specifically, the cache usage pattern of the thread is identified using QR recursive least square algorithm (RLS) and cache miss count time series statistics. For the identified cache resource dynamics, our closed loop cache aware adaptive scheduling framework enforces instruction fairness for the threads. Fairness in the context of our research project is defined as a resource allocation equity, which reduces corunner thread dependence in a shared resource environment. In this way, instruction count degradation due to shared cache resource conflicts is overcome. In this respect, our closed loop cache aware adaptive scheduling framework contributes to the research field in two major and three minor aspects. The two major contributions lead to the cache aware scheduling system. The first major contribution is the development of the execution fairness algorithm, which degrades the co-runner cache impact on the thread performance. The second contribution is the development of relevant mathematical models, such as thread execution pattern and cache access pattern models, which in fact formulate the execution fairness algorithm in terms of mathematical quantities. Following the development of the cache aware scheduling system, our adaptive self-tuning control framework is constructed to add an adaptive closed loop aspect to the cache aware scheduling system. This control framework in fact consists of two main components: the parameter estimator, and the controller design module. The first minor contribution is the development of the parameter estimators; the QR Recursive Least Square(RLS) algorithm is applied into our closed loop cache aware adaptive scheduling framework to estimate highly uncertain and time-varying cache resource patterns of threads. The second minor contribution is the designing of a controller design module; the algebraic controller design algorithm, Pole Placement, is utilized to design the relevant controller, which is able to provide desired timevarying control action. The adaptive self-tuning control framework and cache aware scheduling system in fact constitute our final framework, closed loop cache aware adaptive scheduling framework. The third minor contribution is to validate this cache aware adaptive closed loop scheduling framework efficiency in overwhelming the co-runner cache dependency. The timeseries statistical counters are developed for M-Sim Multi-Core Simulator; and the theoretical findings and mathematical formulations are applied as MATLAB m-file software codes. In this way, the overall framework is tested and experiment outcomes are analyzed. According to our experiment outcomes, it is concluded that our closed loop cache aware adaptive scheduling framework successfully drives co-runner cache dependent thread instruction count to co-runner independent instruction count with an error margin up to 25% in case cache is highly utilized. In addition, thread cache access pattern is also estimated with 75% accuracy.
Resumo:
In this paper, a novel genetic algorithm is developed by generating artificial chromosomes with probability control to solve the machine scheduling problems. Generating artificial chromosomes for Genetic Algorithm (ACGA) is closely related to Evolutionary Algorithms Based on Probabilistic Models (EAPM). The artificial chromosomes are generated by a probability model that extracts the gene information from current population. ACGA is considered as a hybrid algorithm because both the conventional genetic operators and a probability model are integrated. The ACGA proposed in this paper, further employs the ``evaporation concept'' applied in Ant Colony Optimization (ACO) to solve the permutation flowshop problem. The ``evaporation concept'' is used to reduce the effect of past experience and to explore new alternative solutions. In this paper, we propose three different methods for the probability of evaporation. This probability of evaporation is applied as soon as a job is assigned to a position in the permutation flowshop problem. Experimental results show that our ACGA with the evaporation concept gives better performance than some algorithms in the literature.
Resumo:
The paper considers a scheduling model that generalizes the well-known open shop, flow shop, and job shop models. For that model, called the super shop, we study the complexity of finding a time-optimal schedule in both preemptive and non-preemptive cases assuming that precedence constraints are imposed over the set of jobs. Two types of precedence rela-tions are considered. Most of the arising problems are proved to be NP-hard, while for some of them polynomial-time algorithms are presented.
Resumo:
We consider two “minimum”NP-hard job shop scheduling problems to minimize the makespan. In one of the problems every job has to be processed on at most two out of three available machines. In the other problem there are two machines, and a job may visit one of the machines twice. For each problem, we define a class of heuristic schedules in which certain subsets of operations are kept as blocks on the corresponding machines. We show that for each problem the value of the makespan of the best schedule in that class cannot be less than 3/2 times the optimal value, and present algorithms that guarantee a worst-case ratio of 3/2.
Resumo:
The paper deals with the determination of an optimal schedule for the so-called mixed shop problem when the makespan has to be minimized. In such a problem, some jobs have fixed machine orders (as in the job-shop), while the operations of the other jobs may be processed in arbitrary order (as in the open-shop). We prove binary NP-hardness of the preemptive problem with three machines and three jobs (two jobs have fixed machine orders and one may have an arbitrary machine order). We answer all other remaining open questions on the complexity status of mixed-shop problems with the makespan criterion by presenting different polynomial and pseudopolynomial algorithms.
Resumo:
We survey recent results on the computational complexity of mixed shop scheduling problems. In a mixed shop, some jobs have fixed machine orders (as in the job shop), while the operations of the other jobs may be processed in arbitrary order (as in the open shop). The main attention is devoted to establishing the boundary between polynomially solvable and NP-hard problems. When the number of operations per job is unlimited, we focus on problems with a fixed number of jobs.
Resumo:
The paper considers scheduling problems for parallel dedicated machines subject to resource constraints. A fairly complete computational complexity classification is obtained, a number of polynomial-time algorithms are designed. For the problem with a fixed number of machines in which a job uses at most one resource of unit size a polynomial-time approximation scheme is offered.
Resumo:
We study a two-machine flow shop scheduling problem with no-wait in process, in which one of the machines is not available during a specified time interval. We consider three scenarios of handing the operation affected by the nonavailability interval. Its processing may (i) start from scratch after the interval, or (ii) be resumed from the point of interruption, or (iii) be partially restarted after the interval. The objective is to minimize the makespan. We present an approximation algorithm that for all these scenarios delivers a worst-case ratio of 3/2. For the second scenario, we offer a 4/3-approximation algorithm.
Resumo:
The paper considers the flow shop scheduling problems to minimize the makespan, provided that an individual precedence relation is specified on each machine. A fairly complete complexity classification of problems with two and three machines is obtained.
Resumo:
In this paper we provide a fairly complete complexity classification of various versions of the two-machine permutation flow shop scheduling problem to minimize the makespan in which some of the jobs have to be processed with no-wait in process. For some version, we offer a fully polynomial-time approximation scheme and a 43-approximation algorithm.
Resumo:
We consider a range of single machine and identical parallel machine pre-emptive scheduling models with controllable processing times. For each model we study a single criterion problem to minimize the compression cost of the processing times subject to the constraint that all due dates should be met. We demonstrate that each single criterion problem can be formulated in terms of minimizing a linear function over a polymatroid, and this justifies the greedy approach to its solution. A unified technique allows us to develop fast algorithms for solving both single criterion problems and bicriteria counterparts.
Resumo:
We consider a variety of preemptive scheduling problems with controllable processing times on a single machine and on identical/uniform parallel machines, where the objective is to minimize the total compression cost. In this paper, we propose fast divide-and-conquer algorithms for these scheduling problems. Our approach is based on the observation that each scheduling problem we discuss can be formulated as a polymatroid optimization problem. We develop a novel divide-and-conquer technique for the polymatroid optimization problem and then apply it to each scheduling problem. We show that each scheduling problem can be solved in $ \O({\rm T}_{\rm feas}(n) \times\log n)$ time by using our divide-and-conquer technique, where n is the number of jobs and Tfeas(n) denotes the time complexity of the corresponding feasible scheduling problem with n jobs. This approach yields faster algorithms for most of the scheduling problems discussed in this paper.