Using ant colonies for solve the multiprocessor task graph scheduling


Autoria(s): Bremang, Appah
Data(s)

2006

Resumo

The problem of scheduling a parallel program presented by a weighted directed acyclic graph (DAG) to the set of homogeneous processors for minimizing the completion time of the program has been extensively studied as academic optimization problem which occurs in optimizing the execution time of parallel algorithm with parallel computer.In this paper, we propose an application of the Ant Colony Optimization (ACO) to a multiprocessor scheduling problem (MPSP). In the MPSP, no preemption is allowed and each operation demands a setup time on the machines. The problem seeks to compose a schedule that minimizes the total completion time.We therefore rely on heuristics to find solutions since solution methods are not feasible for most problems as such. This novel heuristic searching approach to the multiprocessor based on the ACO algorithm a collection of agents cooperate to effectively explore the search space.A computational experiment is conducted on a suit of benchmark application. By comparing our algorithm result obtained to that of previous heuristic algorithm, it is evince that the ACO algorithm exhibits competitive performance with small error ratio.

Formato

application/pdf

Identificador

http://urn.kb.se/resolve?urn=urn:nbn:se:du-2381

Idioma(s)

eng

Publicador

Högskolan Dalarna, Datateknik

Borlänge

Direitos

info:eu-repo/semantics/openAccess

Palavras-Chave #Multiprocessor scheduling problems #ant colony algorithm #ant system #pheromone trail #makespan.
Tipo

Student thesis

info:eu-repo/semantics/bachelorThesis

text