993 resultados para Multiple inputs
Resumo:
Eukaryotic phenotypic diversity arises from multitasking of a core proteome of limited size. Multitasking is routine in computers, as well as in other sophisticated information systems, and requires multiple inputs and outputs to control and integrate network activity. Higher eukaryotes have a mosaic gene structure with a dual output, mRNA (protein-coding) sequences and introns, which are released from the pre-mRNA by posttranscriptional processing. Introns have been enormously successful as a class of sequences and comprise up to 95% of the primary transcripts of protein-coding genes in mammals. In addition, many other transcripts (perhaps more than half) do not encode proteins at all, but appear both to be developmentally regulated and to have genetic function. We suggest that these RNAs (eRNAs) have evolved to function as endogenous network control molecules which enable direct gene-gene communication and multitasking of eukaryotic genomes. Analysis of a range of complex genetic phenomena in which RNA is involved or implicated, including co-suppression, transgene silencing, RNA interference, imprinting, methylation, and transvection, suggests that a higher-order regulatory system based on RNA signals operates in the higher eukaryotes and involves chromatin remodeling as well as other RNA-DNA, RNA-RNA, and RNA-protein interactions. The evolution of densely connected gene networks would be expected to result in a relatively stable core proteome due to the multiple reuse of components, implying,that cellular differentiation and phenotypic variation in the higher eukaryotes results primarily from variation in the control architecture. Thus, network integration and multitasking using trans-acting RNA molecules produced in parallel with protein-coding sequences may underpin both the evolution of developmentally sophisticated multicellular organisms and the rapid expansion of phenotypic complexity into uncontested environments such as those initiated in the Cambrian radiation and those seen after major extinction events.
Resumo:
There is a pressing need to address productivity analysis in the hospitality industry if hotels are to exist as sustainable business entities in rapidly maturing markets. Unfortunately, productivity ratios commonly used by managers are narrowly defined. This study illustrates data envelopment analysis of cross-sectional data that benchmark hotels on observed best performances. Data envelopment analysis enables management to integrate unlike multiple inputs and outputs to make simultaneous comparisons. Findings from the cross-sectional data suggest that some of the hotels have the potential to reduce number of beds and number of part-time staff while increasing revenue.
Resumo:
The general trend towards increasing e ciency and energy density drives the industry to high-speed technologies. Active Magnetic Bearings (AMBs) are one of the technologies that allow contactless support of a rotating body. Theoretically, there are no limitations on the rotational speed. The absence of friction, low maintenance cost, micrometer precision, and programmable sti ness have made AMBs a viable choice for highdemanding applications. Along with the advances in power electronics, such as signi cantly improved reliability and cost, AMB systems have gained a wide adoption in the industry. The AMB system is a complex, open-loop unstable system with multiple inputs and outputs. For normal operation, such a system requires a feedback control. To meet the high demands for performance and robustness, model-based control techniques should be applied. These techniques require an accurate plant model description and uncertainty estimations. The advanced control methods require more e ort at the commissioning stage. In this work, a methodology is developed for an automatic commissioning of a subcritical, rigid gas blower machine. The commissioning process includes open-loop tuning of separate parts such as sensors and actuators. The next step is to apply a system identi cation procedure to obtain a model for the controller synthesis. Finally, a robust model-based controller is synthesized and experimentally evaluated in the full operating range of the system. The commissioning procedure is developed by applying only the system components available and a priori knowledge without any additional hardware. Thus, the work provides an intelligent system with a self-diagnostics feature and an automatic commissioning.
Resumo:
Les fichiers accompagnant le document sont en format Microsoft Excel 2010.
Resumo:
A simple method for designing a digital state-derivative feedback gain and a feedforward gain such that the control law is equivalent to a known and adequate state feedback and feedforward control law of a digital redesigned system is presented. It is assumed that the plant is a linear controllable, time-invariant, Single-Input (SI) or Multiple-Input (MI) system. This procedure allows the use of well-known continuous-time state feedback design methods to directly design discrete-time state-derivative feedback control systems. The state-derivative feedback can be useful, for instance, in the vibration control of mechanical systems, where the main sensors are accelerometers. One example considering the digital redesign with state-derivative feedback of a helicopter illustrates the proposed method. © 2009 IEEE.
Estudo e implementação de sinais de excitação aplicados em identificação de sistemas multivariáveis.
Resumo:
Devido à crescente implementação do Controle Preditivo baseado em Modelo (MPC) em outros processos além de refino e plantas petroquímicas, que geralmente possuem múltiplas entradas e saídas, tem-se um aumento na demanda de modelos gerados por identificação de sistemas. Identificar modelos que representem fielmente a dinâmica do processo depende em grande medida das características dos sinais de excitação dos processos. Assim, o foco deste trabalho é realizar um estudo dos sinais típicos usados em identificação de sistemas, PRBS e GBN, em uma abordagem multivariável. O estudo feito neste trabalho parte das características da geração dos sinais individualmente, depois é feita uma análise de correlação cruzada dos sinais de entrada, observando a influência desta sobre os resultados de identificação. Evitar uma alta correlação entre os sinais de entrada permite determinar o efeito de cada entrada sobre a saída no processo de identificação. Um ponto importante no projeto de sinais de identificação de sistemas multivariáveis é a frequência dos mesmos para conseguir excitar os processos nas regiões de frequência de operação normal e assim extrair a maior informação dinâmica possível do processo. As características estudadas são avaliadas por meio de testes em três plantas simuladas diferentes, categorizadas como mal, medianamente e bem condicionadas. Estas implementações foram feitas usando sinais GBN e PRBS de diferentes frequências. Expressões para a caracterização dos sinais de excitação foram avaliadas identificando os processos em malha aberta e malha fechada. Para as plantas mal condicionadas foram implementados sinais compostos por uma parte completamente correlacionada e uma parte não-correlacionada, conhecido como método de dois passos. Finalmente são realizados experimentos de identificação em uma aplicação em tempo real de uma planta piloto de neutralização de pH. Os testes realizados na planta foram feitos visando avaliar os estudos de frequência e correlação em uma aplicaficção real. Os resultados mostram que a condição de sinais completamente descorrelacionados n~ao deve ser cumprida para ter bons resultados nos modelos identificados. Isto permite ter mais exibilidade na geração do conjunto de sinais de excitação.
Resumo:
We demonstrate a portable process for developing a triple bottom line model to measure the knowledge production performance of individual research centres. For the first time, this study also empirically illustrates how a fully units-invariant model of Data Envelopment Analysis (DEA) can be used to measure the relative efficiency of research centres by capturing the interaction amongst a common set of multiple inputs and outputs. This study is particularly timely given the increasing transparency required by governments and industries that fund research activities. The process highlights the links between organisational objectives, desired outcomes and outputs while the emerging performance model represents an executive managerial view. This study brings consistency to current measures that often rely on ratios and univariate analyses that are not otherwise conducive to relative performance analysis.
Resumo:
(Magill, M., Quinzii, M., 2002. Capital market equilibrium with moral hazard. Journal of Mathematical Economics 38, 149-190) showed that, in a stockmarket economy with private information, the moral hazard problem may be resolved provided that a spanning overlap condition is satisfed. This result depends on the assumption that the technology is given by a stochastic production function with a single scalar input. The object of the present paper is to extend the analysis of Magill and Quinzii to the case of multiple inputs. We show that their main result extends to this general case if and only if, for each firm, the number of linearly independent combinations of securities having payoffs correlated with, but not dependent on, the firms output is equal to the number of degrees of freedom in the firm's production technology.
Resumo:
The increasing intensity of global competition has led organizations to utilize various types of performance measurement tools for improving the quality of their products and services. Data envelopment analysis (DEA) is a methodology for evaluating and measuring the relative efficiencies of a set of decision making units (DMUs) that use multiple inputs to produce multiple outputs. All the data in the conventional DEA with input and/or output ratios assumes the form of crisp numbers. However, the observed values of data in real-world problems are sometimes expressed as interval ratios. In this paper, we propose two new models: general and multiplicative non-parametric ratio models for DEA problems with interval data. The contributions of this paper are fourfold: (1) we consider input and output data expressed as interval ratios in DEA; (2) we address the gap in DEA literature for problems not suitable or difficult to model with crisp values; (3) we propose two new DEA models for evaluating the relative efficiencies of DMUs with interval ratios, and (4) we present a case study involving 20 banks with three interval ratios to demonstrate the applicability and efficacy of the proposed models where the traditional indicators are mostly financial ratios. © 2011 Elsevier Inc.
Resumo:
Data envelopment analysis (DEA) is a methodology for measuring the relative efficiencies of a set of decision making units (DMUs) that use multiple inputs to produce multiple outputs. Crisp input and output data are fundamentally indispensable in conventional DEA. However, the observed values of the input and output data in real-world problems are sometimes imprecise or vague. Many researchers have proposed various fuzzy methods for dealing with the imprecise and ambiguous data in DEA. In this study, we provide a taxonomy and review of the fuzzy DEA methods. We present a classification scheme with four primary categories, namely, the tolerance approach, the a-level based approach, the fuzzy ranking approach and the possibility approach. We discuss each classification scheme and group the fuzzy DEA papers published in the literature over the past 20 years. To the best of our knowledge, this paper appears to be the only review and complete source of references on fuzzy DEA. © 2011 Elsevier B.V. All rights reserved.
Resumo:
Data envelopment analysis (DEA) has been proven as an excellent data-oriented efficiency analysis method for comparing decision making units (DMUs) with multiple inputs and multiple outputs. In conventional DEA, it is assumed that the status of each measure is clearly known as either input or output. However, in some situations, a performance measure can play input role for some DMUs and output role for others. Cook and Zhu [Eur. J. Oper. Res. 180 (2007) 692–699] referred to these variables as flexible measures. The paper proposes an alternative model in which each flexible measure is treated as either input or output variable to maximize the technical efficiency of the DMU under evaluation. The main focus of this paper is on the impact that the flexible measures has on the definition of the PPS and the assessment of technical efficiency. An example in UK higher education intuitions shows applicability of the proposed approach.
Resumo:
Data envelopment analysis (DEA) is a methodology for measuring the relative efficiencies of a set of decision making units (DMUs) that use multiple inputs to produce multiple outputs. Crisp input and output data are fundamentally indispensable in conventional DEA. However, the observed values of the input and output data in real-world problems are sometimes imprecise or vague. Many researchers have proposed various fuzzy methods for dealing with the imprecise and ambiguous data in DEA. This chapter provides a taxonomy and review of the fuzzy DEA (FDEA) methods. We present a classification scheme with six categories, namely, the tolerance approach, the α-level based approach, the fuzzy ranking approach, the possibility approach, the fuzzy arithmetic, and the fuzzy random/type-2 fuzzy set. We discuss each classification scheme and group the FDEA papers published in the literature over the past 30 years. © 2014 Springer-Verlag Berlin Heidelberg.
Resumo:
Dissertação de Mestrado, Gestão Empresarial, Faculdade de Economia, Universidade do Algarve, 2016
Resumo:
Dendritic spines are sites of the vast majority of excitatory synaptic input to hippocampal CA1 pyramidal cells. Estrogen has been shown to increase the density of dendritic spines on CA1 pyramidal cell dendrites in adult female rats. In parallel with increased spine density, estrogen has been shown also to increase the number of spine synapses formed with multiple synapse boutons (MSBs). These findings suggest that estrogen-induced dendritic spines form synaptic contacts with preexisting presynaptic boutons, transforming some previously single synapse boutons (SSBs) into MSBs. The goal of the current study was to determine whether estrogen-induced MSBs form multiple synapses with the same or different postsynaptic cells. To quantify same-cell vs. different-cell MSBs, we filled individual CA1 pyramidal cells with biocytin and serially reconstructed dendrites and dendritic spines of the labeled cells, as well as presynaptic boutons in synaptic contact with labeled and unlabeled (i.e., different-cell) spines. We found that the overwhelming majority of MSBs in estrogen-treated animals form synapses with more than one postsynaptic cell. Thus, in addition to increasing the density of excitatory synaptic input to individual CA1 pyramidal cells, estrogen also increases the divergence of input from individual presynaptic boutons to multiple postsynaptic CA1 pyramidal cells. These findings suggest the formation of new synaptic connections between previously unconnected hippocampal neurons.
Resumo:
In global scientific experiments with collaborative scenarios involving multinational teams there are big challenges related to data access, namely data movements are precluded to other regions or Clouds due to the constraints on latency costs, data privacy and data ownership. Furthermore, each site is processing local data sets using specialized algorithms and producing intermediate results that are helpful as inputs to applications running on remote sites. This paper shows how to model such collaborative scenarios as a scientific workflow implemented with AWARD (Autonomic Workflow Activities Reconfigurable and Dynamic), a decentralized framework offering a feasible solution to run the workflow activities on distributed data centers in different regions without the need of large data movements. The AWARD workflow activities are independently monitored and dynamically reconfigured and steering by different users, namely by hot-swapping the algorithms to enhance the computation results or by changing the workflow structure to support feedback dependencies where an activity receives feedback output from a successor activity. A real implementation of one practical scenario and its execution on multiple data centers of the Amazon Cloud is presented including experimental results with steering by multiple users.