945 resultados para Multiple abstraction levels
Resumo:
Virtual platforms are of paramount importance for design space exploration and their usage in early software development and verification is crucial. In particular, enabling accurate and fast simulation is specially useful, but such features are usually conflicting and tradeoffs have to be made. In this paper we describe how we integrated TLM communication mechanisms into a state-of-the-art, cycle-accurate, MPSoC simulation platform. More specifically, we show how we adapted ArchC fast functional instruction set simulators to the MPARM platform in order to achieve both fast simulation speed and accuracy. Our implementation led to a much faster hybrid platform, reaching speedups of up to 2.9 and 2.1x on average with negligible impact on power estimation accuracy (average 3.26% and 2.25% of standard deviation). © 2011 IEEE.
Resumo:
The existence of multiple active levels in a photorefractive Bi12TiO20 crystal is here investigated at 514.5nm wavelength. We carry out two-wave mixing experiments using symmetrically incident beams of equal intensities. A large amplitude fast phase modulation in one of the beams reduces the fringes visibility and improves the detection of the generated frequency modulated signals in both (R and S) output directions. Diffraction efficiencies of the phase (photorefractive) and the absorption (photochromic) gratings are quantitatively computed as functions of the grating period. Results show that the absorption grating has two distinct components: one associated to the photorefractive trap density modulation and another related to local light-induced effects between different levels. The photorefractive grating was also investigated at 633nm and 594nm (besides 514.5nm) and a significant quenching of the photorefractive effect was observed at these wavelengths.
Resumo:
Aim: High gamma diversity in tropical montane forests may be ascribed to high geographical turnover of community composition, resulting from population isolation that leads to speciation. We studied the evolutionary processes responsible for diversity and turnover in assemblages of tropical scarab beetles (Scarabaeidae) by assessing DNA sequence variation at multiple hierarchical levels. Location: A 300-km transect across six montane forests (900–1100 m) in Costa Rica. Methods: Assemblages of Scarabaeidae (subfamilies Dynastinae, Rutelinae, Melolonthinae) including 118 morphospecies and > 500 individuals were sequenced for the cox1 gene to establish species limits with a mixed Yule–coalescent method. A species-level phylogenetic tree was constructed from cox1 and rrnL genes. Total diversity and turnover among assemblages were then assessed at three hierarchical levels: haplotypes, species and higher clades. Results: DNA-based analyses showed high turnover among communities at all hierarchical levels. Turnover was highest at the haplotype level (community similarity 0.02–0.12) and decreased with each step of the hierarchy (species: 0.21–0.46; clades: 0.41–0.43). Both compositional and phylogenetic similarities of communities were geographically structured, but turnover was not correlated with distance among forests. When three major clades were investigated separately, communities of Dynastinae showed consistently higher alpha diversity, larger species ranges and lower turnover than Rutelinae and Melolonthinae. Main conclusions: Scarab communities of montane forests show evidence of evolutionary persistence of communities in relative isolation, presumably tracking suitable habitats elevationally to accommodate climatic changes. Patterns of diversity on all hierarchical levels seem to be determined by restricted dispersal, and differences in Dynastinae could be explained by their greater dispersal ability. Community-wide DNA sequencing across multiple lineages and hierarchical levels reveals the evolutionary processes that led to high beta diversity in tropical montane forests through time.
Resumo:
In this research the recovery of a DQPSK signal will be demonstrated using a single Mach-Zehnder Interferometer (MZI). By changing the phase delay in one of the arms it will be shown that different delays will produce different output levels. It will also be shown that with a certain level of phase shift the DQPSK signal can be converted into four different equally spaced optical power levels. With each decoded level representing one of the four possible bit permutations. By using this additional phase shift in one of the arms the number of MZIs required for decoding can be reduced from two to one.
Resumo:
Construction projects are complex endeavors that require the involvement of different professional disciplines in order to meet various project objectives that are often conflicting. The level of complexity and the multi-objective nature of construction projects lend themselves to collaborative design and construction such as integrated project delivery (IPD), in which relevant disciplines work together during project conception, design and construction. Traditionally, the main objectives of construction projects have been to build in the least amount of time with the lowest cost possible, thus the inherent and well-established relationship between cost and time has been the focus of many studies. The importance of being able to effectively model relationships among multiple objectives in building construction has been emphasized in a wide range of research. In general, the trade-off relationship between time and cost is well understood and there is ample research on the subject. However, despite sustainable building designs, relationships between time and environmental impact, as well as cost and environmental impact, have not been fully investigated. The objectives of this research were mainly to analyze and identify relationships of time, cost, and environmental impact, in terms of CO2 emissions, at different levels of a building: material level, component level, and building level, at the pre-use phase, including manufacturing and construction, and the relationships of life cycle cost and life cycle CO2 emissions at the usage phase. Additionally, this research aimed to develop a robust simulation-based multi-objective decision-support tool, called SimulEICon, which took construction data uncertainty into account, and was capable of incorporating life cycle assessment information to the decision-making process. The findings of this research supported the trade-off relationship between time and cost at different building levels. Moreover, the time and CO2 emissions relationship presented trade-off behavior at the pre-use phase. The results of the relationship between cost and CO2 emissions were interestingly proportional at the pre-use phase. The same pattern continually presented after the construction to the usage phase. Understanding the relationships between those objectives is a key in successfully planning and designing environmentally sustainable construction projects.
Resumo:
Les systèmes Matériels/Logiciels deviennent indispensables dans tous les aspects de la vie quotidienne. La présence croissante de ces systèmes dans les différents produits et services incite à trouver des méthodes pour les développer efficacement. Mais une conception efficace de ces systèmes est limitée par plusieurs facteurs, certains d'entre eux sont: la complexité croissante des applications, une augmentation de la densité d'intégration, la nature hétérogène des produits et services, la diminution de temps d’accès au marché. Une modélisation transactionnelle (TLM) est considérée comme un paradigme prometteur permettant de gérer la complexité de conception et fournissant des moyens d’exploration et de validation d'alternatives de conception à des niveaux d’abstraction élevés. Cette recherche propose une méthodologie d’expression de temps dans TLM basée sur une analyse de contraintes temporelles. Nous proposons d'utiliser une combinaison de deux paradigmes de développement pour accélérer la conception: le TLM d'une part et une méthodologie d’expression de temps entre différentes transactions d’autre part. Cette synergie nous permet de combiner dans un seul environnement des méthodes de simulation performantes et des méthodes analytiques formelles. Nous avons proposé un nouvel algorithme de vérification temporelle basé sur la procédure de linéarisation des contraintes de type min/max et une technique d'optimisation afin d'améliorer l'efficacité de l'algorithme. Nous avons complété la description mathématique de tous les types de contraintes présentées dans la littérature. Nous avons développé des méthodes d'exploration et raffinement de système de communication qui nous a permis d'utiliser les algorithmes de vérification temporelle à différents niveaux TLM. Comme il existe plusieurs définitions du TLM, dans le cadre de notre recherche, nous avons défini une méthodologie de spécification et simulation pour des systèmes Matériel/Logiciel basée sur le paradigme de TLM. Dans cette méthodologie plusieurs concepts de modélisation peuvent être considérés séparément. Basée sur l'utilisation des technologies modernes de génie logiciel telles que XML, XSLT, XSD, la programmation orientée objet et plusieurs autres fournies par l’environnement .Net, la méthodologie proposée présente une approche qui rend possible une réutilisation des modèles intermédiaires afin de faire face à la contrainte de temps d’accès au marché. Elle fournit une approche générale dans la modélisation du système qui sépare les différents aspects de conception tels que des modèles de calculs utilisés pour décrire le système à des niveaux d’abstraction multiples. En conséquence, dans le modèle du système nous pouvons clairement identifier la fonctionnalité du système sans les détails reliés aux plateformes de développement et ceci mènera à améliorer la "portabilité" du modèle d'application.
Resumo:
Aquatic ecosystems are confronted with multiple stress factors. Current approaches to assess the risk of anthropogenic stressors to aquatic ecosystems are developed for single stressors and determine stressor effects primarily as a function of stressor properties. The cumulative impact of several stressors, however, may differ markedly from the impact of the single stressors and can result in nonlinear effects and ecological surprises. To meet the challenge of diagnosing and predicting multiple stressor impacts, assessment strategies should focus on properties of the biological receptors rather than on stressor properties. This change of paradigm is required because (i) multiple stressors affect multiple biological targets at multiple organizational levels, (ii) biological receptors differ in their sensitivities, vulnerabilities, and response dynamics to the individual stressors, and (iii) biological receptors function as networks, so that actions of stressors at disparate sites within the network can lead via indirect or cascading effects, to unexpected outcomes.
Resumo:
In recent future, wireless sensor networks (WSNs) will experience a broad high-scale deployment (millions of nodes in the national area) with multiple information sources per node, and with very specific requirements for signal processing. In parallel, the broad range deployment of WSNs facilitates the definition and execution of ambitious studies, with a large input data set and high computational complexity. These computation resources, very often heterogeneous and driven on-demand, can only be satisfied by high-performance Data Centers (DCs). The high economical and environmental impact of the energy consumption in DCs requires aggressive energy optimization policies. These policies have been already detected but not successfully proposed. In this context, this paper shows the following on-going research lines and obtained results. In the field of WSNs: energy optimization in the processing nodes from different abstraction levels, including reconfigurable application specific architectures, efficient customization of the memory hierarchy, energy-aware management of the wireless interface, and design automation for signal processing applications. In the field of DCs: energy-optimal workload assignment policies in heterogeneous DCs, resource management policies with energy consciousness, and efficient cooling mechanisms that will cooperate in the minimization of the electricity bill of the DCs that process the data provided by the WSNs.
Resumo:
In recent future, wireless sensor networks ({WSNs}) will experience a broad high-scale deployment (millions of nodes in the national area) with multiple information sources per node, and with very specific requirements for signal processing. In parallel, the broad range deployment of {WSNs} facilitates the definition and execution of ambitious studies, with a large input data set and high computational complexity. These computation resources, very often heterogeneous and driven on-demand, can only be satisfied by high-performance Data Centers ({DCs}). The high economical and environmental impact of the energy consumption in {DCs} requires aggressive energy optimization policies. These policies have been already detected but not successfully proposed. In this context, this paper shows the following on-going research lines and obtained results. In the field of {WSNs}: energy optimization in the processing nodes from different abstraction levels, including reconfigurable application specific architectures, efficient customization of the memory hierarchy, energy-aware management of the wireless interface, and design automation for signal processing applications. In the field of {DCs}: energy-optimal workload assignment policies in heterogeneous {DCs}, resource management policies with energy consciousness, and efficient cooling mechanisms that will cooperate in the minimization of the electricity bill of the DCs that process the data provided by the WSNs.
Resumo:
In the last decade, multi-sensor data fusion has become a broadly demanded discipline to achieve advanced solutions that can be applied in many real world situations, either civil or military. In Defence,accurate detection of all target objects is fundamental to maintaining situational awareness, to locating threats in the battlefield and to identifying and protecting strategically own forces. Civil applications, such as traffic monitoring, have similar requirements in terms of object detection and reliable identification of incidents in order to ensure safety of road users. Thanks to the appropriate data fusion technique, we can give these systems the power to exploit automatically all relevant information from multiple sources to face for instance mission needs or assess daily supervision operations. This paper focuses on its application to active vehicle monitoring in a particular area of high density traffic, and how it is redirecting the research activities being carried out in the computer vision, signal processing and machine learning fields for improving the effectiveness of detection and tracking in ground surveillance scenarios in general. Specifically, our system proposes fusion of data at a feature level which is extracted from a video camera and a laser scanner. In addition, a stochastic-based tracking which introduces some particle filters into the model to deal with uncertainty due to occlusions and improve the previous detection output is presented in this paper. It has been shown that this computer vision tracker contributes to detect objects even under poor visual information. Finally, in the same way that humans are able to analyze both temporal and spatial relations among items in the scene to associate them a meaning, once the targets objects have been correctly detected and tracked, it is desired that machines can provide a trustworthy description of what is happening in the scene under surveillance. Accomplishing so ambitious task requires a machine learning-based hierarchic architecture able to extract and analyse behaviours at different abstraction levels. A real experimental testbed has been implemented for the evaluation of the proposed modular system. Such scenario is a closed circuit where real traffic situations can be simulated. First results have shown the strength of the proposed system.
Resumo:
Classification is the most basic method for organizing resources in the physical space, cyber space, socio space and mental space. To create a unified model that can effectively manage resources in different spaces is a challenge. The Resource Space Model RSM is to manage versatile resources with a multi-dimensional classification space. It supports generalization and specialization on multi-dimensional classifications. This paper introduces the basic concepts of RSM, and proposes the Probabilistic Resource Space Model, P-RSM, to deal with uncertainty in managing various resources in different spaces of the cyber-physical society. P-RSM’s normal forms, operations and integrity constraints are developed to support effective management of the resource space. Characteristics of the P-RSM are analyzed through experiments. This model also enables various services to be described, discovered and composed from multiple dimensions and abstraction levels with normal form and integrity guarantees. Some extensions and applications of the P-RSM are introduced.
Resumo:
In an overcapacity world, where the customers can choose from many similar products to satisfy their needs, enterprises are looking for new approaches and tools that can help them not only to maintain, but also to increase their competitive edge. Innovation, flexibility, quality, and service excellence are required to, at the very least, survive the on-going transition that industry is experiencing from mass production to mass customization. In order to help these enterprises, this research develops a Supply Chain Capability Maturity Model named S(CM)2. The Supply Chain Capability Maturity Model is intended to model, analyze, and improve the supply chain management operations of an enterprise. The Supply Chain Capability Maturity Model provides a clear roadmap for enterprise improvement, covering multiple views and abstraction levels of the supply chain, and provides tools to aid the firm in making improvements. The principal research tool applied is the Delphi method, which systematically gathered the knowledge and experience of eighty eight experts in Mexico. The model is validated using a case study and interviews with experts in supply chain management. The resulting contribution is a holistic model of the supply chain integrating multiple perspectives, and providing a systematic procedure for the improvement of a company’s supply chain operations.
Resumo:
In an overcapacity world, where the customers can choose from many similar products to satisfy their needs, enterprises are looking for new approaches and tools that can help them not only to maintain, but also to increase their competitive edge. Innovation, flexibility, quality, and service excellence are required to, at the very least, survive the on-going transition that industry is experiencing from mass production to mass customization. In order to help these enterprises, this research develops a Supply Chain Capability Maturity Model named S(CM)2. The Supply Chain Capability Maturity Model is intended to model, analyze, and improve the supply chain management operations of an enterprise. The Supply Chain Capability Maturity Model provides a clear roadmap for enterprise improvement, covering multiple views and abstraction levels of the supply chain, and provides tools to aid the firm in making improvements. The principal research tool applied is the Delphi method, which systematically gathered the knowledge and experience of eighty eight experts in Mexico. The model is validated using a case study and interviews with experts in supply chain management. The resulting contribution is a holistic model of the supply chain integrating multiple perspectives, and providing a systematic procedure for the improvement of a company’s supply chain operations.
Resumo:
The convergence between the recent developments in sensing technologies, data science, signal processing and advanced modelling has fostered a new paradigm to the Structural Health Monitoring (SHM) of engineered structures, which is the one based on intelligent sensors, i.e., embedded devices capable of stream processing data and/or performing structural inference in a self-contained and near-sensor manner. To efficiently exploit these intelligent sensor units for full-scale structural assessment, a joint effort is required to deal with instrumental aspects related to signal acquisition, conditioning and digitalization, and those pertaining to data management, data analytics and information sharing. In this framework, the main goal of this Thesis is to tackle the multi-faceted nature of the monitoring process, via a full-scale optimization of the hardware and software resources involved by the {SHM} system. The pursuit of this objective has required the investigation of both: i) transversal aspects common to multiple application domains at different abstraction levels (such as knowledge distillation, networking solutions, microsystem {HW} architectures), and ii) the specificities of the monitoring methodologies (vibrations, guided waves, acoustic emission monitoring). The key tools adopted in the proposed monitoring frameworks belong to the embedded signal processing field: namely, graph signal processing, compressed sensing, ARMA System Identification, digital data communication and TinyML.
Resumo:
The Brazilian Atlantic Forest hosts one of the world's most diverse and threatened tropical forest biota. In many ways, its history of degradation describes the fate experienced by tropical forests around the world. After five centuries of human expansion, most Atlantic Forest landscapes are archipelagos of small forest fragments surrounded by open-habitat matrices. This 'natural laboratory' has contributed to a better understanding of the evolutionary history and ecology of tropical forests and to determining the extent to which this irreplaceable biota is susceptible to major human disturbances. We share some of the major findings with respect to the responses of tropical forests to human disturbances across multiple biological levels and spatial scales and discuss some of the conservation initiatives adopted in the past decade. First, we provide a short description of the Atlantic Forest biota and its historical degradation. Secondly, we offer conceptual models describing major shifts experienced by tree assemblages at local scales and discuss landscape ecological processes that can help to maintain this biota at larger scales. We also examine potential plant responses to climate change. Finally, we propose a research agenda to improve the conservation value of human-modified landscapes and safeguard the biological heritage of tropical forests.