957 resultados para Multi-sided platform
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Management from the NOVA – School of Business and Economics
Resumo:
The following work project illustrates the strategic issues There App, a mobile application, faces regarding the opportunity to expand from its current state as a product to a multisided platform. Initially, a market analysis is performed to identify the ideal customer groups to be integrated in the platform. Strategic design issues are then discussed on how to best match its value proposition with the identified market opportunity. Suggestions on how the company should organize its resources and operational processes to best deliver on its value proposition complete the work.
Resumo:
The research studies the transformation from a single-sided offering to a multi-sided platform. The study aims to define platforms and their benefits, creating a theoretical framework by applying change management models with the platform theory, and by finding critical change points of the transformation. The empirical research was done by utilizing action research. The researcher worked as project manager in the case company, and studied the transformation project by working actively and leading the project team. The result of the project was a study of how the company would be able to manage the transformation. The results clearly showed that the company didn’t have the capabilities to finish the transformation. As a conclusion, the study showed that the critical change points that led to the project failure were, that the project was managed with insufficient change managerial efforts, which later resulted as lack of commitment to re-allocating the resources to complete the transformation. Many of the critical change points were results of combined change managerial and platform-related issues.
The s-mote: a versatile heterogeneous multi-radio platform for wireless sensor networks applications
Resumo:
This paper presents a novel architecture and its implementation for a versatile, miniaturised mote which can communicate concurrently using a variety of combinations of ISM bands, has increased processing capability, and interoperability with mainstream GSM technology. All these features are integrated in a small form factor platform. The platform can have many configurations which could satisfy a variety of applications’ constraints. To the best of our knowledge, it is the first integrated platform of this type reported in the literature. The proposed platform opens the way for enhanced levels of Quality of Service (QoS), with respect to reliability, availability and latency, in addition to facilitating interoperability and power reduction compared to existing platforms. The small form factor also allows potential of integration with other mobile platforms including smart phones.
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Management from the NOVA – School of Business and Economics
Resumo:
Field Lab in Entrepreneurial Innovative Ventures
Resumo:
The increasing number of players that operate in power systems leads to a more complex management. In this paper a new multi-agent platform is proposed, which simulates the real operation of power system players. MASGriP – A Multi-Agent Smart Grid Simulation Platform is presented. Several consumer and producer agents are implemented and simulated, considering real characteristics and different goals and actuation strategies. Aggregator entities, such as Virtual Power Players and Curtailment Service Providers are also included. The integration of MASGriP agents in MASCEM (Multi-Agent System for Competitive Electricity Markets) simulator allows the simulation of technical and economical activities of several players. An energy resources management architecture used in microgrids is also explained.
Resumo:
The use of efficient synchronization mechanisms is crucial for implementing fine grained parallel programs on modern shared cache multi-core architectures. In this paper we study this problem by considering Single-Producer/Single- Consumer (SPSC) coordination using unbounded queues. A novel unbounded SPSC algorithm capable of reducing the row synchronization latency and speeding up Producer-Consumer coordination is presented. The algorithm has been extensively tested on a shared-cache multi-core platform and a sketch proof of correctness is presented. The queues proposed have been used as basic building blocks to implement the FastFlow parallel framework, which has been demonstrated to offer very good performance for fine-grain parallel applications. © 2012 Springer-Verlag.
Resumo:
Recent research in industrial organisation has investigated the essential place that middlemen have in the networks that make up our global economy. In this paper we attempt to understand how such middlemen compete with each other through a game theoretic analysis using novel techniques from decision-making under ambiguity.
We model a purposely abstract and reduced model of one middleman who provides a two-sided platform, mediating surplus-creating interactions between two users. The middleman evaluates uncertain outcomes under positional ambiguity, taking into account the possibility of the emergence of an alternative middleman offering intermediary services to the two users.
Surprisingly, we find many situations in which the middleman will purposely extract maximal gains from her position. Only if there is relatively low probability of devastating loss of business under competition, the middleman will adopt a more competitive attitude and extract less from her position.
Resumo:
This paper presents a multi-agent system for real-time operation of simulated microgrid using the Smart-Grid Test Bed at Washington State University. The multi-agent system (MAS) was developed in JADE (Java Agent DEvelopment Framework) which is a Foundation for Intelligent Physical Agents (FIPA) compliant open source multi-agent platform. The proposed operational strategy is mainly focused on using an appropriate energy management and control strategies to improve the operation of an islanded microgrid, formed by photovoltaic (PV) solar energy, batteries and resistive and rotating machines loads. The focus is on resource management and to avoid impact on loads from abrupt variations or interruption that changes the operating conditions. The management and control of the PV system is performed in JADE, while the microgrid model is simulated in RSCAD/RTDS (Real-Time Digital Simulator). Finally, the outcome of simulation studies demonstrated the feasibility of the proposed multi-agent approach for real-time operation of a microgrid.
Resumo:
Energy Efficiency is one of the goals of the Smart Building initiatives. This paper presents an Open Energy Management System which consists of an ontology-based multi-technology platform and a wireless transducer network using 6LoWPAN communication technology. The system allows the integration of several building automation protocols and eases the development of different kind of services to make use of them. The system has been implemented and tested in the Energy Efficiency Research Facility at CeDInt-UPM.
Resumo:
This paper presents an Ontology-Based multi-technology platform as part of an open energy management system which also comprises a wireless transducer network for control and monitoring. The platform allows the integration of several building automation protocols, eases the development and implementation of different kinds of services and allows sharing of the data of a building. The system has been implemented and tested in the Energy Efficiency Research Facility at CeDInt-UPM.
Resumo:
When they look at Internet policy, EU policymakers seem mesmerised, if not bewitched, by the word ‘neutrality’. Originally confined to the infrastructure layer, today the neutrality rhetoric is being expanded to multi-sided platforms such as search engines and more generally online intermediaries. Policies for search neutrality and platform neutrality are invoked to pursue a variety of policy objectives, encompassing competition, consumer protection, privacy and media pluralism. This paper analyses this emerging debate and comes to a number of conclusions. First, mandating net neutrality at the infrastructure layer might have some merit, but it certainly would not make the Internet neutral. Second, since most of the objectives initially associated with network neutrality cannot be realistically achieved by such a rule, the case for network neutrality legislation would have to stand on different grounds. Third, the fact that the Internet is not neutral is mostly a good thing for end users, who benefit from intermediaries that provide them with a selection of the over-abundant information available on the Web. Fourth, search neutrality and platform neutrality are fundamentally flawed principles that contradict the economics of the Internet. Fifth, neutrality is a very poor and ineffective recipe for media pluralism, and as such should not be invoked as the basis of future media policy. All these conclusions have important consequences for the debate on the future EU policy for the Digital Single Market.
Resumo:
Interaction engineering is fundamental for agent based systems. In this paper we will present a design pattern for the core of a multi-agent platform - the message communication and behavior activation mechanisms - using language features of C#. An agent platform is developed based on the pattern structure, which is legiti- mated through experiences of using JADE in real applications. Results of the communication model are compared against the popular JADE platform.
Resumo:
For the past several decades, we have experienced the tremendous growth, in both scale and scope, of real-time embedded systems, thanks largely to the advances in IC technology. However, the traditional approach to get performance boost by increasing CPU frequency has been a way of past. Researchers from both industry and academia are turning their focus to multi-core architectures for continuous improvement of computing performance. In our research, we seek to develop efficient scheduling algorithms and analysis methods in the design of real-time embedded systems on multi-core platforms. Real-time systems are the ones with the response time as critical as the logical correctness of computational results. In addition, a variety of stringent constraints such as power/energy consumption, peak temperature and reliability are also imposed to these systems. Therefore, real-time scheduling plays a critical role in design of such computing systems at the system level. We started our research by addressing timing constraints for real-time applications on multi-core platforms, and developed both partitioned and semi-partitioned scheduling algorithms to schedule fixed priority, periodic, and hard real-time tasks on multi-core platforms. Then we extended our research by taking temperature constraints into consideration. We developed a closed-form solution to capture temperature dynamics for a given periodic voltage schedule on multi-core platforms, and also developed three methods to check the feasibility of a periodic real-time schedule under peak temperature constraint. We further extended our research by incorporating the power/energy constraint with thermal awareness into our research problem. We investigated the energy estimation problem on multi-core platforms, and developed a computation efficient method to calculate the energy consumption for a given voltage schedule on a multi-core platform. In this dissertation, we present our research in details and demonstrate the effectiveness and efficiency of our approaches with extensive experimental results.