43 resultados para Mozzarella
Resumo:
The effect of fortification of skim milk powder and sodium caseinate on Cheddar cheeses was investigated. SMP fortification led to decreased moisture, increased yield, higher numbers of NSLAB and reduced proteolysis. The functional and texture properties were also affected by SMP addition and formed a harder, less meltable cheese than the control. NaCn fortification led to increased moisture, increased yield, decreased proteolysis and higher numbers of NSLAB. The functional and textural properties were affected by fortification with NaCn and formed a softer cheese that had similar or less melt than the control. Reducing the lactose:casein ratio of Mozzarella cheese by using ultrafiltration led to higher pH, lower insoluble calcium, lower lactose, galactose and lactic acid levels in the cheese. The texture and functional properties of the cheese was affected by varying the lactose:casein ratio and formed a harder cheese that had similar melt to the control later in ripening. The flavour and bake properties were also affected by decreased lactose:casein ratio; the cheeses had lower acid flavour and blister colour than the control cheese. Varying the ratio of αs1:β-casein in Cheddar cheese affected the texture and functionality of the cheese but did not affect insoluble calcium, proteolysis or pH. Increasing the ratio of αs1:β-casein led to cheese with lower meltability and higher hardness without adverse effects on flavour. Using camel chymosin in Mozzarella cheese instead of calf chymosin resulted in cheese with lower proteolysis, higher softening point, higher hardness and lower blister quantity. The texture and functional properties that determine the shelf life of Mozzarella were maintained for a longer ripening period than when using calf chymosin therefore increasing the window of functionality of Mozzarella. In summary, the results of the trials in this thesis show means of altering the texture, functional, rheology and sensory properties of Mozzarella and Cheddar cheeses.
Resumo:
Curd rheology and calcium distribution in buffalo and cows’ milk, were compared at their natural pH and during acidification (pH 6.5–5.6). Buffalo milk displays a curd structure and rheology different from that of cows’ milk and the casein-bound calcium, as well as the contents of fat, protein and calcium, are also higher. Due to these higher amounts of casein-bound calcium, the overall curd strength with buffalo milk (as indicated by the dynamic moduli) was higher, at similar pH values, than those of equivalent gels produced from cows’ milk. The curd rheology was adversely affected at lower pH (5.8–5.6) in both of the milk types, due to the loss of casein-bound calcium from casein micelles. The degree of solubilisation of calcium in buffalo milk during acidification is quite different from that observed in cows’ milk with a lower proportion of the calcium being solubilised in the former. The maximum curd firmness was obtained at pH 6.0 in both milk types. For both species, these rheological and micellar changes were qualitatively the same but quantitatively different, due to the different milk compositions.
Resumo:
Buffalo curd gave higher amount of yield than cows’ curd at similar processing conditions. Curd moisture was decreased with the increase of gelation temperatures in both types of milk. Curd cutting time of 45 minutes was found optimum for Mozzarella cheese making from both milk samples. Centrifugation method is simpler, quicker and more reproducible than Buchner funnel method. Buffalo milk contains higher amounts of αs1- , β- and к-casein as compared to cows’ milk.
Resumo:
The rheology and microstructure of Mozzarella-type curds made from buffalo and cows’ milk were measured at gelation temperatures of 28, 34 and 39 °C after chymosin addition. The maximum curd strength (G′) was obtained at a gelation temperature of 34 °C in both types of bovine milk. The viscoelasticity (tan δ) of both curds was increased with increasing gelation temperature. The rennet coagulation time was reduced with increase of gelation temperature in both types of milk. Frequency sweep data (0.1–10Hz was recorded 90 min after chymosin addition, and both milk samples showed characteristics of weak viscoelastic gel systems. When both milk samples were subjected to shear stress to break the curd system at constant shear rate, 95 min after chymosin addition, the maximum yield stress was obtained at the gelation temperatures of 34 °C and 28 °C in buffalo and cows’ curd respectively. The cryo-SEM and CLSM techniques were used to observe the microstructure of Mozzarella-type curd. The porosity was measured using image J software. The cryo-SEM and CLSM micrographs showed that minimum porosity was observed at the gelation temperature of 34 °C in both types of milk. Buffalo curd showed minimum porosity at similar gelation temperature when compared to cows’ curd. This may be due to higher protein concentration in buffalo milk.
Resumo:
Rennet-induced curd was made from both natural buffalo and cows’ milk, and ultrafiltered cows’ milk (cows’ milk was concentrated such that it had a chemical composition approximately equivalent to that of the buffalo milk). These milk samples were compared on the basis of their rheology, physicochemical characteristics and curd microstructure. The ionic and soluble calcium contents were found to be similar in all milk samples studied. The total and casein bound calcium were higher in concentrated cows’ milk than in standard cows’ milk. Both cows’ milk types were found to have lower total and casein bound calcium than the buffalo milk. This is probably due to concentration of the colloidal part of milk (casein), during the ultrafiltration (UF) process. The rennet coagulation time was similar in UF cows’ and buffalo milk while both were shorter when compared with that of the cows’ milk. The dynamic moduli (G′, G″) values were higher in both the buffalo and UF cows’ milk than in the cows’ milk after 90 min coagulation. The loss tangent, however, was found to be similar in both the UF cows’ and buffalo milk curds and was lower than that observed for the cows’ milk (0.42, 0.42 and 0.48, respectively). The frequency profile of each type of curd was recorded 90 min after the enzyme addition (0.1–10 Hz); all samples were found to be “weak” viscoelastic, frequency dependent gels. The yield stress was also measured 95 min after the enzyme addition, and a higher value was observed in buffalo milk curd when compared with other curd samples made from both the natural cows’ milk and the UF cows’ milk. The cryo-scanning electron and confocal laser scanning micrographs showed that curd structure appeared to be more “dense” and less porous in buffalo milk than cows’ milk even after concentration to equivalent levels of protein/total solids to those found in the buffalo milk.
Resumo:
Buffalo milk contains (40–60 %) more protein, fat and calcium than cows’ milk. These constituents were enhanced by ultrafiltration (UF) of cows’ milk to give a product with similar levels to those found in the buffalo milk. Mozzarella-type curd was made from buffalo, cows’ and UF cows’ milk to compare the overall curd yield and quality. The curd yield on both dry and wet weight basis, curd moisture content and overall curd fat retention were found to be higher in the UF cows’ milk than for either the buffalo or the cows’ milk preparations. The minimum whey fat losses occurred in the UF cows’ curd when compared to the cows’ and the buffalo curd. The whey protein losses were found to be higher in the UF cows’ curd than those for the buffalo and the cows’ curds. The total mineral content of the curd was also higher in the UF cows’ milk than that found in either the buffalo or the cows’ milk. SEM micrographs showed that casein micelles sizes were different in the two different types of milk. Casein micelles were also observed to be deformed in the UF cows’ milk samples. UF cows’ milk contained higher amounts of both the αs1- and αs2-casein moieties than either the buffalo or the cows’ milk. Buffalo milk was found to contain a higher concentration of β-casein than either the UF cows’ or untreated cows’ milk samples. Gel strength was found to be higher in the resultant buffalo curd than for curds made from either native cows’ milk or those made from UF cows’ milk. The mineral distribution was also different in the three different types of bovine milk, measured by energy-dispersive X-ray (EDX) analysis. Differences in the curd quality observed between the buffalo and the cows’ milk appear to result from the differences in casein composition and overall micelle structure, rather than casein concentration alone.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The aim of this study was analyze the (co)variance components and genetic and phenotypic relationships in the following traits: accumulated milk yield at 270 days (MY270,), observed until 305 days of lactation; accumulated milk yield at 270 days (MY270/A) and at 305 days (MY305), observed until 335 days of lactation; mozzarella cheese yield (MCY) and fat (FP) and protein (PP) percentage, observed until 335 days of lactation. The (co)variance components were estimated by Restricted Maximum Likelihood methodology in analyses single, two and three-traits using animal models. Heritability estimated for MY270, MY270/A, MY305, MCY, FP and PP were 0.22; 0.24, 0.25, 0.14, 0.29 and 0.40 respectively. The genetic correlations between MCY and the variables MY270, MY270/A, MY305, PP and FP was: 0.85; 1.00; 0.89; 0.14 and 0.06, respectively. This way, the selection for the production of milk in long period should increase MCY. However, in the search of animals that produce milk with quality, the genetic parameters suggest that another index should be composed allying these studied traits.
Resumo:
Mozzarella cheese is traditionally prepared from bubaline (Bubalus bubalis) milk, but product adulteration occurs mainly by addition of or full substitution by bovine milk. The aim of this study was to show the usefulnes of molecular markers to identify the admixture of bovine milk to bubaline milk during the manufacturing process of mozzarella cheese. Samples of mozzarella cheese were produced by adding seven different concentrations of bovine milk: 0%, 1%, 2%, 5%, 8%, 12% and 100%. DNA extracted from somatic cells found in cheese were submitted to PCR-RFLP analysis of casein genes: α-s1-CN - CSN1S1 that encompasses 954 bp from exon VII to intron IX (AluI and HinfI), β-CN - CSN2 including 495 bp of exon VII (Hae III and HinfI), and κ-CN - CSN3, encompassing 373 bp of exon IV (AluI and HindIII). Our results indicate that Hae III-RFLP of CSN2exon VII can be used as a molecular marker to detect the presence of bovine milk in mozzarella cheese. Copyright © 2008, Sociedade Brasileira de Genética.
Resumo:
The probiotic potential of Leuconostoc mesenteroides subsp. mesenteroides SJRP55 isolated from water buffalo mozzarella cheese was evaluated. The microorganism presented resistance to stressful conditions that simulated the gastrointestinal tract, and to the best of our knowledge Leuconostoc mesenteroides SJRP55 was the first of this species with the ability to deconjugate bile salts. Tolerance to NaCl was temperature dependent, as well the results obtained by aggregation capacity. The strain presented good adhesion properties, β galactosidase activity, viability in fermented milk during storage, non-active against Streptococcus thermophilus and sensible to most of the tested antibiotics. Some analgesic medications inhibited the growth of the strain. Leuconostoc mesenteroides SJRP55 exhibited in vitro probiotic potential, and it can be better characterized through future in vivo tests. This bacterium presents higher functional properties compared to other studied strains, and therefore it is a potential candidate for the application as a probiotic strain, which could be used by industries in the manufacture of functional milk-based products.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This study reports the implementation of GMPs in a mozzarella cheese processing plant. The mozzarella cheese manufacturing unit is located in the Southwestern region of the state of Parana, Brazil, and processes 20,000 L of milk daily. The implementation of GMP took place with the creation of a multi-disciplinary team and it was carried out in four steps: diagnosis, report of the diagnosis and road map, corrective measures and follow-up of GMP implementation. The effectiveness of actions taken and GMP implementation was compared by the total percentages of non-conformities and conformities before and after implementation of GMR Microbiological indicators were also used to assess the implementation of GMP in the mozzarella cheese processing facility. Results showed that the average percentage of conformity after the implementation of GMP was significant increased to 66%, while before it was 32% (p < 0.05). The populations of aerobic microorganisms and total coliforms in equipment were significantly reduced (p < 0.05) after the implementation of GMP, as well as the populations of total coliforms in the hands of food handlers (p < 0.05). In conclusion, GMP implementation changed the overall organization of the cheese processing unity, as well as managers and food handlers' behavior and knowledge on the quality and safety of products manufactured. (C) 2011 Elsevier Ltd. All rights reserved.