888 resultados para Mouse uterus


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to analyze the function and expression of tachykinins, tachykinin receptors, and neprilysin (NEP) in the mouse uterus. A previous study showed that the uterotonic effects of substance P (SP), neurokinin A (NKA), and neurokinin B (NKB) in estrogen-treated mice were mainly mediated by the tachykinin NK, receptor. In the present work, further contractility studies were undertaken to determine the nature of the receptors mediating responses to tachykinins in uteri of late pregnant mice. Endpoint and real-time quantitative RTPCR were used to analyze the expression of the genes that encode the tachykinins SP/NKA, NKB, and hemokinin-1 (HK-1) (Tac1, Tac2, and Tac4); and the genes that encode tachykinin NK1 (Tacr1), NK2 (Tacr2), and NK3 (Tacr3) receptors in uteri from pregnant and nonpregnant mice. The data show that the mRNAs of tachykinins (particularly NKB and HK-1), tachykinin receptors, and NEP are locally expressed in the mouse uterus, and their expression changes during the estrous cycle and during pregnancy. The tachykinin INK, receptor is the predominant tachykinin receptor in the nonpregnant and early pregnant mouse and may mediate tachykinin-induced uterine contractions in the nonpregnant mouse. The tachykinin NK, receptor is predominant in the late pregnant mouse and is the main receptor mediating uterotonic responses to tachykinins at late pregnancy. The tachykinin NK, receptor is expressed in considerable amounts only in uteri from nonpregnant diestrous animals, and its physiological significance remains to be clarified.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have previously shown the differential expression of versican in the mouse uterus under ovarian hormone influence. We also demonstrated there is not a direct correlation between mRNA levels and protein expression, suggesting posttranscriptional events, such as alteration in mRNA stability. This posttranscriptional effect may result in the elongation and stabilization of transcripts poly(A) tail. Thus, the aim of this study was to analyze whether estradiol (E2) regulates versican mRNA stability and expression in a dose-related and time-dependent manner. For this purpose female mice were ovariectomized and treated with a single injection of 0.1 or 10 μg E2. To block transcription a group of females received a single injection of alpha-amanitin before hormone administration. Uterine tissues were collected 30 min, 1, 3, 6, 12 and 24 h after treatments and processed for quantitative real time PCR (qPCR), RACE-PAT Assay and immunohistochemistry. qPCR showed that versican mRNA levels are higher than control from 3 to 24 h after E2 administration, whereas after transcription inhibition versican mRNA unexpectedly increases within 3 h, which can be explained when transcriptional blockers alter the degradation rate of the transcript, resulting in the superinduction of this mRNA. Accordingly, analysis of versican transcript poly(A) tail evidenced a longer product 3 h after treatment, but not after 12 h. Versican immunoreaction becomes conspicuous in the superficial stroma only 3 h after E2 injection, whereas the whole stroma is immunoreactive from 6 h onward. These results demonstrate that E2 modulates versican at the transcriptional and posttranscriptional levels in a time-dependent manner.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Estrogen is known to increase progesterone receptor (PR) levels in the wild-type mouse uterus, and this estrogen induction was thought to be important for progesterone action through the PR. The estrogen receptor α knockout (ERKO) mouse uterus was observed to express PR mRNA that cannot be induced by estrogen. Progesterone action was characterized to determine whether it was diminished in ERKO mice. The PR protein is present in the ERKO uterus at 60% of the level measured in a wild-type uterus. The PR-A and PR-B isoforms are both detected on Western blot, and the ratio of isoforms is the same in both genotypes. Although the level of PR is reduced in the ERKO uterus, the receptor level is sufficient to induce genomic responses, since both calcitonin and amphiregulin mRNAs were increased after progesterone treatment. Finally, the ERKO uterus can be induced to undergo a progesterone-dependent decidual response. Surprisingly, the decidual response is estrogen independent in the ERKO, although it remains estrogen dependent in a wild type. These results indicate that estrogen receptor α modulation of PR levels is not necessary for expression of the PR or genomic and physiologic responses to progesterone in the ERKO uterus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using RNA (Northern) blot hybridization and reverse transcription-PCR, we demonstrate that the brain-type cannabinoid receptor (CB1-R) mRNA, but not the spleen-type cannabinoid receptor (CB2-R) mRNA, is expressed in the mouse uterus and that this organ has the capacity to synthesize the putative endogenous cannabinoid ligand, anandamide (arachidonylethanolamide). The psychoactive cannabinoid component of marijuana--delta 9-tetrahydrocannabinol (THC)--or anandamide, but not the inactive and nonpsychoactive cannabidiol (CBD), inhibited forskolin-stimulated cyclic AMP formation in the mouse uterus, which was prevented by pertussis toxin pretreatment. These results suggest that uterine CB1-R is coupled to inhibitory guanine nucleotide-binding protein and is biologically active. Autoradiographic studies identified ligand binding sites ([3H]anandamide) in the uterine epithelium and stromal cells, suggesting that these cells are perhaps the targets for cannabinoid action. Scatchard analysis of the binding of [3H]WIN 55212-2, another cannabinoid receptor ligand, showed a single class of high-affinity binding sites in the endometrium with an apparent Kd of 2.4 nM and Bmax of 5.4 x 10(9) molecules per mg of protein. The gene encoding lactoferrin is an estrogen-responsive gene in the mouse uterus that was rapidly and transiently up-regulated by THC, but not by CBD, in ovariectomized mice in the absence of ovarian steroids. This effect, unlike that of 17 beta-estradiol (E2), was not influenced by a pure antiestrogen, ICI 182780, suggesting that the THC-induced uterine lactoferrin gene expression does not involve estrogen receptors. We propose that the uterus is a new target for cannabinoid ligand-receptor signaling.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In the pregnant mouse uterus, small leucine-rich proteoglycans (SLRPs) are drastically remodeled within a few hours after fertilization, suggesting that ovarian hormone levels modulate their synthesis and degradation. In this study, we followed by immunoperoxidase approach, the presence of four members of the SLRP family (decorin, lumican, biglycan, and fibromodulin) in the uterine tissues along the estrous cycle of the mouse. All molecules except fibromodulin, which predominates in the myometrium, showed a striking modulation in their distribution in the endometrial stroma, following the rise in the level of estrogen. Moreover, notable differences in the distribution of SLRPs were observed between superficial and deep stroma, as well as between the internal and external layers of the myometrium. Only biglycan and fibromodulin were expressed in the luminal and glandular epithelia. All four SLRPs were found in cytoplasmic granules of mononucleated cells. The pattern of distribution of the immunoreaction for these molecules in the uterine tissues was found to be estrous cycle-stage dependent, suggesting that these molecules undergo ovarian hormonal control and probably participate in the preparation of the uterus for decidualization and embryo implantation. In addition, this and previous results from our laboratory suggest the existence of two subpopulations of endometrial fibroblasts that may be related to the centrifugal development of the decidua. Anat Rec, 292:138-153, 2009. (c) 2008 Wiley-Liss, Inc.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Abstract Background Remodeling of the extracellular matrix is one of the most striking features observed in the uterus during the estrous cycle and after hormone replacement. Versican (VER) is a hyaluronan-binding proteoglycan that undergoes RNA alternative splicing, generating four distinct isoforms. This study analyzed the synthesis and distribution of VER in mouse uterine tissues during the estrous cycle, in ovariectomized (OVX) animals and after 17beta-estradiol (E2) and medroxyprogesterone (MPA) treatments, either alone or in combination. Methods Uteri from mice in all phases of the estrous cycle, and animals subjected to ovariectomy and hormone replacement were collected for immunoperoxidase staining for versican, as well as PCR and quantitative Real Time PCR. Results In diestrus and proestrus, VER was exclusively expressed in the endometrial stroma. In estrus and metaestrus, VER was present in both endometrial stroma and myometrium. In OVX mice, VER immunoreaction was abolished in all uterine tissues. VER expression was restored by E2, MPA and E2+MPA treatments. Real Time PCR analysis showed that VER expression increases considerably in the MPA-treated group. Analysis of mRNA identified isoforms V0, V1 and V3 in the mouse uterus. Conclusion These results show that the expression of versican in uterine tissues is modulated by ovarian steroid hormones, in a tissue-specific manner. VER is induced in the myometrium exclusively by E2, whereas MPA induces VER deposition only in the endometrial stroma.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Previous studies from our lab have established that large molecular weight mucin glycoproteins are major apically-disposed components of mouse uterine epithelial cells in vitro (Valdizan et al., (1992) J. Cell. Physiol. 151:451-465). The present studies demonstrate that Muc-1 represents one of the apically-disposed mucin glycoproteins of mouse uterine epithelia, and that Muc-1 protein and mRNA expression are regulated in the peri-implantation stage mouse uterus by ovarian steroids. Muc-1 expression is high in the proestrous and estrous stages, and decreases during diestrous. Both Muc-1 protein and mRNA levels decline to barely detectable levels by day 4 of pregnancy, i.e., prior to the time of blastocyst attachment. In contrast, Muc-1 expression in the cervix and vagina is maintained during this same period. Delayed implantation was established in pregnant mice by ovariectomy and maintained by administration of exogenous progesterone. Initiation of implantation was triggered by coinjection of progesterone maintained mice with a nidatory dose of 17$\beta$-estradiol. Muc-1 levels in the uterine epithelia of progesterone maintained mice declined to similar low levels as observed on day 4 of normal pregnancy. Coinjection of estradiol did not alter Muc-1 expression suggesting that down-regulation of Muc-1 is a progesterone dominated event. This was confirmed in ovariectomized, non-pregnant mice which displayed stimulation of Muc-1 expression following 6 hr of estradiol injection. Estradiol stimulated Muc-1 expression was inhibited by the pure antiestrogen, ICI 164,384. While progesterone alone had no effect on Muc-1 expression, it antagonized estradiol action in this regard. Injection of pregnant mice with the antiprogestin, RU 486, a known implantation inhibitor, on day 3 of pregnancy restored high level expression of Muc-1 mRNA on day 4, indicating that down-regulation of Muc-1 is progesterone receptor-mediated. Muc-1 appears to function as an anti-adhesive molecule at the apical cell surface of mouse uterine epithelial cells. Treatment of polarized cultures of mouse uterine epithelial cells with O-sialoglycoprotein endopeptidase reduced mucin expression in vitro, by about 50%, and converted polarized uterine epithelia to a functionally receptive state. Similarly, ablation of Muc-1 in Muc-1 null mice resulted in polarized uterine epithelia that were functionally receptive as compared to their wild-type counterparts in vitro. Collectively, these data indicate that Muc-1 and other mucins function as anti-adhesive molecules and that reduction or removal of these molecules is a prerequisite for the generation of a receptive uterine state. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La période de réceptivité endométriale chez l’humain coïncide avec la différentiation des cellules stromales de l’endomètre en cellules hautement spécifiques, les cellules déciduales, durant le processus dit de décidualisation. Or, on sait qu’une transformation anormale des cellules endométriales peut être à l’origine de pertes récurrentes de grossesses. LRH-1 est un récepteur nucléaire orphelin et un facteur de transcription régulant de nombreux évènements relatif à la reproduction et comme tout récepteur, son activation promouvoit l’activité transcriptionnelle de ses gènes cibles. Nous avons déjà montré que LRH-1 et son activité sont essentiels pour la décidualisation au niveau de l’utérus chez la souris et nous savons qu’il est présent dans l’utérus chez l’humain au moment de la phase de prolifération mais aussi de sécrétion du cycle menstruel, et que son expression augmente dans des conditions de décidualisation in vitro. Notre hypothèse est alors la suivante : LRH-1 est indispensable à la décidualisation du stroma endométrial, agissant par le biais de la régulation transcriptionnelle de gènes requis pour la transformation de cellules stromales en cellules déciduales. Afin d’explorer le mécanisme moléculaire impliqué dans la régulation transcriptionnelle effectuée par l’intermédiaire de ce récepteur, nous avons mis en place un modèle de décidualisation in vitro utilisant une lignée de cellules stromales de l’endomètre, cellules humaines et immortelles (hESC). Notre modèle de surexpression développé en transfectant les dites cellules avec un plasmide exprimant LRH-1, résulte en l’augmentation, d’un facteur 5, de l’abondance du transcriptome de gènes marqueurs de la décidualisation que sont la prolactine (PRL) et l’insulin-like growth factor binding protein-1 (IGFBP-1). En outre, la sous-régulation de ce récepteur par l’intermédiaire de petits ARN interférents (shRNA) abolit la réaction déciduale, d’un point de vue morphologique mais aussi en terme d’expression des deux gènes marqueurs cités ci-dessus. Une analyse par Chromatin ImmunoPrécipitation (ou ChIP) a démontré que LRH-1 se lie à des régions génomiques se trouvant en aval de certains gènes importants pour la décidualisation comme PRL, WNT 4, WNT 5, CDKN1A ou encore IL-24, et dans chacun de ces cas cités, cette capacité de liaison augmente dans le cadre de la décidualisation in vitro. Par ailleurs, des études structurelles ont identifié les phospholipides comme des ligands potentiels pour LRH-1. Nous avons donc choisi d’orienter notre travail de façon à explorer les effets sur les ligands liés à LRH-1 de traitements impliquant des agonistes et antagonistes à notre récepteur nucléaire. Les analyses par q-PCR et Western blot ont montré que la modulation de l’activité de LRH-1 par ses ligands influait aussi sur la réaction déciduale. Enfin, des études récentes de Salker et al (Salker, Teklenburg et al. 2010) ont mis en évidence que les cellules stromales humaines décidualisées sont de véritables biocapteurs de la qualité embryonnaire et qu’elles ont la capacité de migrer en direction de l’embryon. La série d’expériences que nous avons réalisée à l’aide de cellules hESC placées en co-culture avec des embryons de souris confirme que la migration cellulaire est bien dirigée vers les embryons. Cette propriété quant à l’orientation de la migration cellulaire est notoirement diminuée dans le cas où l’expression de LRH-1 est déplétée par shRNA dans les hESC. Nos données prouvent donc que LRH-1 régule non seulement la transcription d’un ensemble de gènes impliqués dans le processus de décidualisation mais agit aussi sur la motilité directionnelle de ces cellules hESC décidualisées in vitro.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Estrogens are thought to regulate female reproductive functions by altering gene transcription in target organs primarily via the nuclear estrogen receptor-α (ER-α). By using ER-α “knock-out” (ERKO) mice, we demonstrate herein that a catecholestrogen, 4-hydroxyestradiol-17β (4-OH-E2), and an environmental estrogen, chlordecone (kepone), up-regulate the uterine expression of an estrogen-responsive gene, lactoferrin (LF), independent of ER-α. A primary estrogen, estradiol-17β (E2), did not induce this LF response. An estrogen receptor antagonist, ICI-182,780, or E2 failed to inhibit uterine LF gene expression induced by 4-OH-E2 or kepone in ERKO mice, which suggests that this estrogen signaling pathway is independent of both ER-α and the recently cloned ER-β. 4-OH-E2, but not E2, also stimulated increases in uterine water imbibition and macromolecule uptake in ovariectomized ERKO mice. The results strongly imply the presence of a distinct estrogen-signaling pathway in the mouse uterus that mediates the effects of both physiological and environmental estrogens. This estrogen response pathway will have profound implications for our understanding of the physiology and pathophysiology of female sex steroid hormone actions in target organs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

There is evidence from both genetic and pharmacologic studies to suggest that the cyclooxygenase-2 (COX-2) enzyme plays a causal role in the development of colorectal cancer. However, little is known about the identity or role of the eicosanoid receptor pathways activated by COX-derived prostaglandins (PG). We previously have reported that COX-2-derived prostacyclin promotes embryo implantation in the mouse uterus via activation of the nuclear hormone receptor peroxisome proliferator-activated receptor (PPAR) δ. In light of the recent finding that PPARδ is a target of β-catenin transactivation, it is important to determine whether this signaling pathway is operative during the development of colorectal cancer. Analysis of PPARδ mRNA in matched normal and tumor samples revealed that expression of PPARδ, similar to COX-2, is up-regulated in colorectal carcinomas. In situ hybridization studies demonstrate that PPARδ is expressed in normal colon and localized to the epithelial cells at the very tips of the mucosal glands. In contrast, expression of PPARδ mRNA in colorectal tumors was more widespread with increased levels in transformed epithelial cells. Analysis of PPARδ and COX-2 mRNA in serial sections suggested they were colocalized to the same region within a tumor. Finally, transient transfection assays established that endogenously synthesized prostacyclin (PGI2) could serve as a ligand for PPARδ. In addition, the stable PGI2 analog, carbaprostacyclin, and a synthetic PPARδ agonist induced transactivation of endogenous PPARδ in human colon carcinoma cells. We conclude from these observations that PPARδ, similar to COX-2, is aberrantly expressed in colorectal tumors and that endogenous PPARδ is transcriptionally responsive to PGI2. However, the functional consequence of PPARδ activation in colon carcinogenesis still needs to be determined.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Past studies have shown that epidermal growth factor (EGF) is able to mimic the uterotropic effects of estrogen in the rodent. These studies have suggested a "cross-talk" model in which EGF receptor (EGF-R) signaling results in activation of nuclear estrogen receptor (ER) and its target genes in an estrogen-independent manner. Furthermore, in vitro studies have indicated the requirement for ER in this mechanism. To verify the requirement for ER in an in vivo system, EGF effects were studied in the uteri of ER knockout (ERKO) mice, which lack functional ER. The EGF-R levels, autophosphorylation, and c-fos induction were observed at equivalent levels in both genotypes indicating that removal of ER did not disrupt the EGF responses. Induction of DNA synthesis and the progesterone receptor gene in the uterus were measured after EGF treatment of both ERKO and wild-type animals. Wild-type mice showed increases of 4.3-fold in DNA synthesis, as well as an increase in PR mRNA after EGF treatment. However, these responses were absent in ERKO mice, confirming that the estrogen-like effects of EGF in the mouse uterus do indeed require the ER. These data conclusively demonstrate the coupling of EGF and ER signaling pathways in the rodent reproductive tract.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study investigates the cyclic changes in innate immunity in the female reproductive tract (FRT) of mice during the estrous cycle. By examining uterine and vaginal tissues and secretions we show that innate immunity varies with the stage of the estrous cycle and site in the FRT. Secretions from the uterine lumen contained cytokines and chemokines that were significantly higher at proestrus and estrus relative to that measured at diestrus. In contrast, analysis of vaginal secretions indicated that only IL-1β and CXCL1/mouse KC changed during the cycle, with highest levels measured at diestrus and estrus. In contrast, vaginal α-defensin 2 and β-defensins 1-4 mRNA levels peaked at proestrus and estrus and are expressed 1-4 logs greater than that seen in the uterus. These studies further indicate that TLR5 and TLR12 in the uterus, and TLR1, TLR2, TLR5 and TLR13 in the vagina varies with stage of the estrous cycle, with some peaking at proestrus/estrus and others at diestrus. Overall, these studies indicate that innate immune parameters in the uterus and vagina are separate and discrete, and regulated precisely during the estrous cycle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Early pregnancy is characterized by complex interactions between blood vessels, leukocytes, and conceptus-derived trophoblasts within the gestational uterus. Uterine Natural Killer (uNK) cells become the most abundant leukocyte during decidualization and produce a wide array of angiogenic factors, yet little is known regarding their early pregnancy functions. To characterize the role(s) of uNK cells, whole mount in situ immunohistochemistry of live early implant sites was performed. A timecourse examination of murine early pregnancy (virgin, and gd4.5-9.5) implantation sites was performed. Comparison of Gd6.5, 8.5 and 9.5 implant sites from BALB/c+/+ controls (BALB/c) and BALB/c-Rag2-/-Il2rg-/- (alymphoid) identified anomalies that result from the absence of lymphocytes. In alymphoid decidua basalis, mesometrial angiogenesis was widespread but pruning of nascent vessels within alymphoid decidua basalis was deficient. As early gestation progressed, vessels of alymphoid decidua basalis showed no evidence for remodeling. Alymphoid implantation sites showed ~24h delay in uterine lumen closure and embryonic development. To determine if uNK cells would normalize the anomalies observed in alymphoid implantation sites, adoptive cell transfer of NK+ B- T- marrow to alymphoid mice was performed. All of the above anomalies were reversed by adoptive transfer of NK+B-T- marrow. My results suggest that uNK cells support vascular growth and development which ensures the decidua can support the growing conceptus early in pregnancy prior to formation and function of the placenta. Human decidual NK cells may fill similar roles and be important targets for strategies designed to correct intra-uterine growth restriction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The comparative genomic sequence analysis of a region in human chromosome 11p15.3 and its homologous segment in mouse chromosome 7 between ST5 and LMO1 genes has been performed. 158,201 bases were sequenced in the mouse and compared with the syntenic region in human, partially available in the public databases. The analysed region exhibits the typical eukaryotic genomic structure and compared with the close neighbouring regions, strikingly reflexes the mosaic pattern distribution of (G+C) and repeats content despites its relative short size. Within this region the novel gene STK33 was discovered (Stk33 in the mouse), that codes for a serine/threonine kinase. The finding of this gene constitutes an excellent example of the strength of the comparative sequencing approach. Poor gene-predictions in the mouse genomic sequence were corrected and improved by the comparison with the unordered data from the human genomic sequence publicly available. Phylogenetical analysis suggests that STK33 belongs to the calcium/calmodulin-dependent protein kinases group and seems to be a novelty in the chordate lineage. The gene, as a whole, seems to evolve under purifying selection whereas some regions appear to be under strong positive selection. Both human and mouse versions of serine/threonine kinase 33, consists of seventeen exons highly conserved in the coding regions, particularly in those coding for the core protein kinase domain. Also the exon/intron structure in the coding regions of the gene is conserved between human and mouse. The existence and functionality of the gene is supported by the presence of entries in the EST databases and was in vivo fully confirmed by isolating specific transcripts from human uterus total RNA and from several mouse tissues. Strong evidence for alternative splicing was found, which may result in tissue-specific starting points of transcription and in some extent, different protein N-termini. RT-PCR and hybridisation experiments suggest that STK33/Stk33 is differentially expressed in a few tissues and in relative low levels. STK33 has been shown to be reproducibly down-regulated in tumor tissues, particularly in ovarian tumors. RNA in-situ hybridisation experiments using mouse Stk33-specific probes showed expression in dividing cells from lung and germinal epithelium and possibly also in macrophages from kidney and lungs. Preliminary experimentation with antibodies designed in this work, performed in parallel to the preparation of this manuscript, seems to confirm this expression pattern. The fact that the chromosomal region 11p15 in which STK33 is located may be associated with several human diseases including tumor development, suggest further investigation is necessary to establish the role of STK33 in human health.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cancer antigen 125 (CA125) is a blood biomarker that is routinely used to monitor the progression of human epithelial ovarian cancer (EOC) and is encoded by MUC16, a member of the mucin gene family. The biological function of CA125/MUC16 and its potential role in EOC are poorly understood. Here we report the targeted disruption of the of the Muc16 gene in the mouse. To generate Muc16 knockout mice, 6.0 kb was deleted that included the majority of exon 3 and a portion of intron 3 and replaced with a lacZ reporter cassette. Loss of Muc16 protein expression suggests that Muc16 homozygous mutant mice are null mutants. Muc16 homozygous mutant mice are viable, fertile, and develop normally. Histological analysis shows that Muc16 homozygous mutant tissues are normal. By the age of 1 year, Muc16 homozygous mutant mice appear normal. Downregulation of transcripts from another mucin gene (Muc1) was detected in the Muc16 homozygous mutant uterus. Lack of any prominent abnormal phenotype in these Muc16 knockout mice suggests that CA125/MUC16 is not required for normal development or reproduction. These knockout mice provide a unique platform for future studies to identify the role of CA125/MUC16 in organ homeostasis and ovarian cancer.