837 resultados para Motor Working-memory
Resumo:
How do the layered circuits of prefrontal and motor cortex carry out working memory storage, sequence learning, and voluntary sequential item selection and performance? A neural model called LIST PARSE is presented to explain and quantitatively simulate cognitive data about both immediate serial recall and free recall, including bowing of the serial position performance curves, error-type distributions, temporal limitations upon recall, and list length effects. The model also qualitatively explains cognitive effects related to attentional modulation, temporal grouping, variable presentation rates, phonemic similarity, presentation of non-words, word frequency/item familiarity and list strength, distracters and modality effects. In addition, the model quantitatively simulates neurophysiological data from the macaque prefrontal cortex obtained during sequential sensory-motor imitation and planned performance. The article further develops a theory concerning how the cerebral cortex works by showing how variations of the laminar circuits that have previously clarified how the visual cortex sees can also support cognitive processing of sequentially organized behaviors.
Resumo:
Although key to understanding individual variation in task-related brain activation, the genetic contribution to these individual differences remains largely unknown. Here we report voxel-by-voxel genetic model fitting in a large sample of 319 healthy, young adult, human identical and fraternal twins (mean ± SD age, 23.6 ±1.8 years) who performed an n-back working memory task during functional magnetic resonance imaging (fMRI) at a high magnetic field (4 tesla). Patterns of task-related brain response (BOLD signal difference of 2-back minus 0-back) were significantly heritable, with the highest estimates (40 - 65%) in the inferior, middle, and superior frontal gyri, left supplementary motor area, precentral and postcentral gyri, middle cingulate cortex, superior medial gyrus, angular gyrus, superior parietal lobule, including precuneus, and superior occipital gyri. Furthermore, high test-retest reliability for a subsample of 40 twins indicates that nongenetic variance in the fMRI brain response is largely due to unique environmental influences rather than measurement error. Individual variations in activation of the working memory network are therefore significantly influenced by genetic factors. By establishing the heritability of cognitive brain function in a large sample that affords good statistical power, and using voxel-by-voxel analyses, this study provides the necessary evidence for task-related brain activation to be considered as an endophenotype for psychiatric or neurological disorders, and represents a substantial new contribution to the field of neuroimaging genetics. These genetic brain maps should facilitate discovery of gene variants influencing cognitive brain function through genome-wide association studies, potentially opening up new avenues in the treatment of brain disorders.
Resumo:
Extract of Ginkgo biloba is used to alleviate age-related decline in cognitive function, which may be associated with the loss of catecholamines in the prefrontal cortex. The purpose of this study was to verify whether alpha-2 adrenergic activity is involved in the facilitative effects of extract of Ginkgo biloba on prefrontal cognitive function. Male Wistar rats were trained to reach criterion in the delayed alternation task (0, 25, and 50-s delay intervals). A pilot study found that 3 or 4 mg/kg of yohimbine (intraperitoneal) reduced the choice accuracy of the delayed alternation task in a dose and delay-dependent manner, without influencing motor ability or perseverative behaviour. Acute oral pre-treatment with doses of 50, 100, or 200 mg/kg (but not 25 mg/kg) of extract of Ginkgo biloba prevented the reduction in choice accuracy induced by 4 mg/kg yohimbine. These data suggest that the prefrontal cognition-enhancing effects of extract of Ginkgo biloba are related to its actions on alpha-2-adrenoceptors.
Resumo:
Working memory neural networks are characterized which encode the invariant temporal order of sequential events that may be presented at widely differing speeds, durations, and interstimulus intervals. This temporal order code is designed to enable all possible groupings of sequential events to be stably learned and remembered in real time, even as new events perturb the system. Such a competence is needed in neural architectures which self-organize learned codes for variable-rate speech perception, sensory-motor planning, or 3-D visual object recognition. Using such a working memory, a self-organizing architecture for invariant 3-D visual object recognition is described that is based on the model of Seibert and Waxman [1].
Resumo:
Working memory neural networks are characterized which encode the invariant temporal order of sequential events. Inputs to the networks, called Sustained Temporal Order REcurrent (STORE) models, may be presented at widely differing speeds, durations, and interstimulus intervals. The STORE temporal order code is designed to enable all emergent groupings of sequential events to be stably learned and remembered in real time, even as new events perturb the system. Such a competence is needed in neural architectures which self-organize learned codes for variable-rate speech perception, sensory-motor planning, or 3-D visual object recognition. Using such a working memory, a self-organizing architecture for invariant 3-D visual object recognition is described. The new model is based on the model of Seibert and Waxman (1990a), which builds a 3-D representation of an object from a temporally ordered sequence of its 2-D aspect graphs. The new model, called an ARTSTORE model, consists of the following cascade of processing modules: Invariant Preprocessor --> ART 2 --> STORE Model --> ART 2 --> Outstar Network.
Resumo:
This study explored changes in scalp electrophysiology across two Working Memory (WM) tasks and two age groups. Continuous electroencephalography (EEG) was recorded from 18 healthy adults (18-34 years) and 12 healthy adolescents (14-17) during the performance of two Oculomotor Delayed Response (ODR) WM tasks; (i.e. eye movements were the metric of motor response). Delay-period, EEG data in the alpha frequency was sampled from anterior and parietal scalp sites to achieve a general measure of frontal and parietal activity, respectively. Frontal-parietal, alpha coherence was calculated for each participant for each ODR-WM task. Coherence significantly decreased in adults moving across the two ODR tasks, whereas, coherence significantly increased in adolescents moving across the two ODR tasks. The effects of task in the adolescent and adult groups were large and medium, respectively. Within the limits of this study, the results provide empirical support that WM development during adolescence include complex, qualitative, change.
Resumo:
Constrained principal component analysis (CPCA) with a finite impulse response (FIR) basis set was used to reveal functionally connected networks and their temporal progression over a multistage verbal working memory trial in which memory load was varied. Four components were extracted, and all showed statistically significant sensitivity to the memory load manipulation. Additionally, two of the four components sustained this peak activity, both for approximately 3 s (Components 1 and 4). The functional networks that showed sustained activity were characterized by increased activations in the dorsal anterior cingulate cortex, right dorsolateral prefrontal cortex, and left supramarginal gyrus, and decreased activations in the primary auditory cortex and "default network" regions. The functional networks that did not show sustained activity were instead dominated by increased activation in occipital cortex, dorsal anterior cingulate cortex, sensori-motor cortical regions, and superior parietal cortex. The response shapes suggest that although all four components appear to be invoked at encoding, the two sustained-peak components are likely to be additionally involved in the delay period. Our investigation provides a unique view of the contributions made by a network of brain regions over the course of a multiple-stage working memory trial.
Resumo:
Antipsychotic drug treatment of schizophrenia may be complicated by side effects of widespread dopaminergic antagonism, including exacerbation of negative and cognitive symptoms due to frontal cortical hypodopaminergia. Atypical antipsychotics have been shown to enhance frontal dopaminergic activity in animal models. We predicted that substitution of risperidone for typical antipsychotic drugs in the treatment of schizophrenia would be associated with enhanced functional activation of frontal cortex. We measured cerebral blood oxygenation changes during periodic performance of a verbal working memory task, using functional MRI, on two occasions (baseline and 6 weeks later) in two cohorts of schizophrenic patients. One cohort (n = 10) was treated with typical antipsychotic drugs throughout the study. Risperidone was substituted for typical antipsychotics after baseline assessment in the second cohort (n = 10). A matched group of healthy volunteers (n = 10) was also studied on a single occasion. A network comprising bilateral dorsolateral prefrontal and lateral premotor cortex, the supplementary motor area, and posterior parietal cortex was activated by working memory task performance in both the patients and comparison subjects. A two-way analysis of covariance was used to estimate the effect of substituting risperidone for typical antipsychotics on power of functional response in the patient group. Substitution of risperidone increased functional activation in right prefrontal cortex, supplementary motor area, and posterior parietal cortex at both voxel and regional levels of analysis. This study provides direct evidence for significantly enhanced frontal function in schizophrenic patients after substitution of risperidone for typical antipsychotic drugs, and it indicates the potential value of functional MRI as a tool for longitudinal assessment of psychopharmacological effects on cerebral physiology.
Resumo:
We review research on the neural bases of verbal working memory, focusing on human neuroimaging studies. We first consider experiments that indicate that verbal working memory is composed of multiple components. One component involves the subvocal rehearsal of phonological information and is neurally implemented by left-hemisphere speech areas, including Broca’s area, the premotor area, and the supplementary motor area. Other components of verbal working memory may be devoted to pure storage and to executive processing of the contents of memory. These studies rest on a subtraction logic, in which two tasks are imaged, differing only in that one task presumably has an extra process, and the difference image is taken to reflect that process. We then review studies that show that the previous results can be obtained with experimental methods other than subtraction. We focus on the method of parametric variation, in which a parameter that presumably reflects a single process is varied. In the last section, we consider the distinction between working memory tasks that require only storage of information vs. those that require that the stored items be processed in some way. These experiments provide some support for the hypothesis that, when a task requires processing the contents of working memory, the dorsolateral prefrontal cortex is disproportionately activated.
Resumo:
The selective activation of the prefrontal cortical dopamine system by mild stress can be mimicked by anxiogenic beta-carbolines such as FG7142. To investigate the functional relevance of elevated levels of dopamine turnover in the prefrontal cortex, the current study examined the effects of FG7142 on the performance of spatial working memory tasks in the rat and monkey. FG7142 selectively increased prefrontal cortical dopamine turnover in rats and significantly impaired performance on spatial working memory tasks in both rats and monkeys. Spatial discrimination, a task with similar motor and motivational demands (rats), or delayed response performance following zero-second delays (monkeys) was unaffected by FG7142. Further, biochemical analysis in rats revealed a significant positive correlation between dopamine turnover in the prefrontal cortex and cognitive impairment on the delayed alternation task. The cognitive deficits in both rats and monkeys were prevented by pretreatment with the benzodiazepine receptor antagonist, RO15-1788, which blocked the increase in dopamine turnover and by the dopamine receptor antagonists, haloperidol, clozapine, and SCH23390. These findings indicate that excessive dopamine activity in the prefrontal cortex is detrimental to cognitive functions mediated by the prefrontal cortex.
Resumo:
Two novel studies examining the capacity and characteristics of working memory for object weights, experienced through lifting, were completed. Both studies employed visually identical objects of varying weight and focused on memories linking object locations and weights. Whereas numerous studies have examined the capacity of visual working memory, the capacity of sensorimotor memory involved in motor control and object manipulation has not yet been explored. In addition to assessing working memory for object weights using an explicit perceptual test, we also assessed memory for weight using an implicit measure based on motor performance. The vertical lifting or LF and the horizontal GF applied during lifts, measured from force sensors embedded in the object handles, were used to assess participants’ ability to predict object weights. In Experiment 1, participants were presented with sets of 3, 4, 5, 7 or 9 objects. They lifted each object in the set and then repeated this procedure 10 times with the objects lifted either in a fixed or random order. Sensorimotor memory was examined by assessing, as a function of object set size, how lifting forces changed across successive lifts of a given object. The results indicated that force scaling for weight improved across the repetitions of lifts, and was better for smaller set sizes when compared to the larger set sizes, with the latter effect being clearest when objects were lifting in a random order. However, in general the observed force scaling was poorly scaled. In Experiment 2, working memory was examined in two ways: by determining participants’ ability to detect a change in the weight of one of 3 to 6 objects lifted twice, and by simultaneously measuring the fingertip forces applied when lifting the objects. The results showed that, even when presented with 6 objects, participants were extremely accurate in explicitly detecting which object changed weight. In addition, force scaling for object weight, which was generally quite weak, was similar across set sizes. Thus, a capacity limit less than 6 was not found for either the explicit or implicit measures collected.
Resumo:
Two experiments investigated the consequences of action at encoding and recall on the ability to follow sequences of instructions. Children aged 7–9 years recalled sequences of spoken action commands under presentation and recall conditions that either did or did not involve their physical performance. In both experiments, recall was enhanced by carrying out the instructions as they were being initially presented and also by performing them at recall. In contrast, the accuracy of instruction-following did not improve above spoken presentation alone, either when the instructions were silently read or heard by the child (Experiment 1), or when the child repeated the spoken instructions as they were presented (Experiment 2). These findings suggest that the enactment advantage at presentation does not simply reflect a general benefit of a dual exposure to instructions, and that it is not a result of their self-production at presentation. The benefits of action-based recall were reduced following enactment during presentation, suggesting that the positive effects of action at encoding and recall may have a common origin. It is proposed that the benefits of physical movement arise from the existence of a short-term motor store that maintains the temporal, spatial, and motoric features of either planned or already executed actions.
Resumo:
Examined whether discrete working memory deficits underlie positive, negative and disorganised symptoms of schizophrenia. 52 outpatients (mean age 37.5 yrs) with schizophrenia were studied using items drawn from the Positive and Negative Syndrome Scale (PANSS). Linear regression and correlational analyses were conducted to examine whether symptom dimension scores were related to performance on several tests of working memory function. Severity of negative symptoms correlated with reduced production of words during a verbal fluency task, impaired ability to hold letter and number sequences on-line and manipulate them simultaneously, reduced performance during a dual task, and compromised visuospatial working memory under distraction-free conditions. Severity of disorganisation symptoms correlated with impaired visuospatial working memory under conditions of distraction, failure of inhibition during a verbal fluency task, perseverative responding on a test of set-shifting ability, and impaired ability to judge the veracity of simple declarative statements. The present study provides evidence that the positive, negative and disorganised symptom dimensions of the PANSS constitute independent clusters, associated with unique patterns of working memory impairment.