984 resultados para Molecular organization


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transforming growth factor-beta s (TGF-beta 5) are multifunctional polypeptides, known to influence proliferation and differentiation of many cell types. TGF-beta 5 cDNA was cloned from Xenopus laevis and this isoform is unique to the amphibians. Here, we report the isolation and characterization of the TGF-beta 5 genomic clones to determine the structure of TGF-beta 5 gene. The gene consists of seven exons and all intron-exon boundaries follow the GT-AG consensus. The organization of TGF-beta 5 gene was identical to that of the mammalian TGF-beta isoforms, with the exception of position of the first splice junction. We determined the size of TGF-beta 5 gene to be approximately 20 kb.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The interfacing of aromatic molecules with biomolecules to design functional molecular materials is a promising area of research. Intermolecular interactions determine the performance of these materials and therefore, precise control over the molecular organization is necessary to improve functional properties. Herein we describe the tunable biomimetic molecular engineering of a promising n-type organic semiconductor, naphthalene diimide (NDI), in the solid state by introducing minute structural mutations in the form of amino acids with variable Ca-functionality. For the first time we could achieve all four possible crystal packing modes, namely cofacial, brickwork, herringbone and slipped stacks of the NDI system. Furthermore, amino acid conjugated NDIs exhibit ultrasonication induced organogels with tunable visco-elastic and temperature responsive emission properties. The amino acid-NDI conjugates self-assemble into 0D nanospheres and 1D nanofibers in their gel state while the ethylamine-NDI conjugate forms 2D sheets from its solution. Photophysical studies indicated the remarkable influence of molecular ordering on the absorption and fluorescence properties of NDIs. Interestingly, the circular dichroism (CD) and X-ray diffraction (XRD) studies revealed the existence of helical ordering of NDIs in both solution and solid state. The chiral amino acids and their conformations with respect to the central NDI core are found to influence the nature of the helical organization of NDIs. Consequently, the origin of the preferential handedness in the helical organization is attributed to transcription of chiral information from the amino acid to the NDI core. On account of these unique properties, the materials derived from NDI-conjugates might find a wide range of future interdisciplinary applications from materials to biomedicine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tese de Doutoramento, Biologia Molecular, Faculdade de Ciências do Mar e do Ambiente, Universidade do Algarve, 2001

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tese de mestrado. Biologia (Biologia Molecular e Genética). Universidade de Lisboa, Faculdade de Ciências, 2014

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Measurements are presented of the force between two molecularly smooth mica surfaces immersed in liquid poly(dimethylsiloxane) (Dow Corning 200 of nominal viscosity 50 cS) over a range of film thicknesses from 3 to 200 nm. There is a repulsion, attributed to conformational restrictions, when the polymer molecules are confined to a gap less than about 15 nm thick. In extremely thin films (<5 nm) the force is an oscillatory function of thickness with a repeat spacing corresponding to the width of the polymer molecule, which suggests that the polymer segments are arranged in layers near the solid surfaces. Dynamic force measurements show that the polymer has a viscosity equal to its bulk value even in very thin films, but a region next to each surface, only about one radius of gyration thick, does not flow. Saturation of the polymer with water destabilizes the film when it is very thin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Atomic force microscopy (AFM) and Fourier transform infrared spectroscopy (FTIR) are used to investigate molecular organization in Langmuir-Blodgett (LB) films of two kinds of lignins. The lignins were extracted from sugar cane bagasse using distinct extraction processes and are referred to here as ethanol lignin (EL) and saccharification lignin (SAC). AFM images show that LB films from EL have a flat surface in comparison with those from SAC. For the latter, ellipsoidal aggregates are seen oriented perpendicularly to the substrate. This result is confirmed by a combination of transmission and reflection FTIR measurements, which also point to lignin aggregates preferentially oriented perpendicularly to the substrate. For LB films from EL, on the other hand, aggregates are preferentially oriented parallel to the substrate, again consistent with the flat surface observed in AFM data. The vibrational spectroscopy data for cast films from both lignins show random molecular organization, as one should expect.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There are few reports on the genomic organization of 5S rDNA in fish species. To characterize the 5S rDNA nucleotide sequence and chromosomal localization in the Neotropical fishes of the genus Brycon, 5S rDNA copies from seven species were generated by PCR. The nucleotide sequences of the coding region (5S rRNA gene) and the nontranscribed spacer (NTS) were determined, revealing that the 5S rRNA genes were highly conserved, while the NTSs were widely variable among the species analyzed. Moreover, two classes of NTS were detected in each species, characterized by base substitutions and insertions-deletions. Using fluorescence in situ hybridization (FISH), two 5S rDNA chromosome loci that could be related to the two 5S rDNA NTS classes were observed in at least one of the species studied. 5S rDNA sequencing and chromosomal localization permitted the characterization of Brycon spp. and suggest a higher similarity among some of them. The data obtained indicate that the 5S rDNA can be an useful genetic marker for species identification and evolutionary studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The control of the properties of materials at the molecular level is pursued for many applications, especially those associated with nanostructures. In this paper, we show that the coordination compound [Ni(dmit)(2)], where (dmit) is the 1,3-dithiole-2-thione-4,5-dithiolate ligand, can induce doping of poly(2-methoxyaniline) (POMA) in molecularly ordered Langmuir and Langmuir-Blodgett (LB) films. Doping was associated with interactions between the components and the compression of the Langmuir film at the air-water interface, according to polarization-modulated infrared reflection-absorption spectroscopy (PM-IRRAS) data. Taking these results together with in situ UV-Vis absorption measurements, we could identify the molecular groups involved in the interaction, including the way they were reoriented upon film compression. The Langmuir films were sufficiently stable to be transferred as Y-type LB films, while the hybrid POMA/[Ni(dmit)(2)] films remain doped in the solid state. As expected, the molecular charges affected the film morphology, as observed from combined atomic and electric force microscopy measurements. In summary, with adequate spectroscopy and microscopy tools we characterized molecular-level interactions, which may allow one to design molecular electronic devices with controlled electrical properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The alignement and anchoring of liquid crystals on solid surfaces is a key problem for modern device technology that until now has been treated empirically, but that can now be tackled by atomistic computer simulations. Molecular dynamics (MD) simulations were used in this thesis work to study two films of 7 and 8 n-alkyl-4’cyanobiphenyl (7CB and 8CB) liquid crystals , with a thickness of 15 nm, confined between two (001) surfaces of MoS2 (molybdenite). The isotropic and nematic phases of both liquid crystals were simulated, and the resulting structures characterized structurally. A new force field was designed to model the interactions between the liquid crystal (LC) molecules and the surface of molybdenite, while an accurate force field developed previously was used to model the 7CB and 8CB molecules. The results show that the (001) molybdenite surface induces a planar orientation in both the liquid crystals. For the nematic phase of 8CB, one of the two solid/LC interfaces is composed of a first layer of molecules aligned parallel to the surface, followed by a second layer of molecules aligned perpendicular to the surface (also called, homeotropic). The effect of the surface appears to be local in nature as it is confined to the first 15 Angström of the LC film. Conversely, for the nematic phase of 7CB, a planar ordering is established into the LC film. The LC molecules at the interface with the molybdenite appear to align preferentially their alkyl chains toward the solid substrate. The resulting tilt angle of molecules was found to be in good agreement with experimental measurements available in literature. Despite the fact that the MD simulations spanned a time range of more than 100 ns, the nematic phases of both 7CB and 8CB were found not to be completely formed. In order to confirm the findings presented in this thesis, we propose to extend the current study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A set of oat–maize chromosome addition lines with individual maize (Zea mays L.) chromosomes present in plants with a complete oat (Avena sativa L.) chromosome complement provides a unique opportunity to analyze the organization of centromeric regions of each maize chromosome. A DNA sequence, MCS1a, described previously as a maize centromere-associated sequence, was used as a probe to isolate cosmid clones from a genomic library made of DNA purified from a maize chromosome 9 addition line. Analysis of six cosmid clones containing centromeric DNA segments revealed a complex organization. The MCS1a sequence was found to comprise a portion of the long terminal repeats of a retrotransposon-like repeated element, termed CentA. Two of the six cosmid clones contained regions composed of a newly identified family of tandem repeats, termed CentC. Copies of CentA and tandem arrays of CentC are interspersed with other repetitive elements, including the previously identified maize retroelements Huck and Prem2. Fluorescence in situ hybridization revealed that CentC and CentA elements are limited to the centromeric region of each maize chromosome. The retroelements Huck and Prem2 are dispersed along all maize chromosomes, although Huck elements are present in an increased concentration around centromeric regions. Significant variation in the size of the blocks of CentC and in the copy number of CentA elements, as well as restriction fragment length variations were detected within the centromeric region of each maize chromosome studied. The different proportions and arrangements of these elements and likely others provide each centromeric region with a unique overall structure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A specific set of molecules including glutamate receptors is targeted to the postsynaptic specialization of excitatory synapses in the brain, gathering in a structure known as the postsynaptic density (PSD). Synaptic targeting of glutamate receptors depends on interactions between the C-terminal tails of receptor subunits and specific PDZ domain-containing scaffold proteins in the PSD. These scaffold proteins assemble a specialized protein complex around each class of glutamate receptor that functions in signal transduction, cytoskeletal anchoring, and trafficking of the receptors. Among the glutamate receptor subtypes, the N-methyl-d-aspartate receptor is relatively stably integrated in the PSD, whereas the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor moves in and out of the postsynaptic membrane in highly dynamic fashion. The distinctive cell biological behaviors of N-methyl-d-aspartate and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors can be explained by their differential interactions with cytoplasmic proteins.