911 resultados para Modulation-doped
Resumo:
Recently, we have found an additional spin-orbit (SO) interaction in quantum wells with two subbands [Bernardes , Phys. Rev. Lett. 99, 076603 (2007)]. This new SO term is nonzero even in symmetric geometries, as it arises from the intersubband coupling between confined states of distinct parities, and its strength is comparable to that of the ordinary Rashba. Starting from the 8x8 Kane model, here we present a detailed derivation of this new SO Hamiltonian and the corresponding SO coupling. In addition, within the self-consistent Hartree approximation, we calculate the strength of this new SO coupling for realistic symmetric modulation-doped wells with two subbands. We consider gated structures with either a constant areal electron density or a constant chemical potential. In the parameter range studied, both models give similar results. By considering the effects of an external applied bias, which breaks the structural inversion symmetry of the wells, we also calculate the strength of the resulting induced Rashba couplings within each subband. Interestingly, we find that for double wells the Rashba couplings for the first and second subbands interchange signs abruptly across the zero bias, while the intersubband SO coupling exhibits a resonant behavior near this symmetric configuration. For completeness we also determine the strength of the Dresselhaus couplings and find them essentially constant as function of the applied bias.
Electrical transport quantum effects in the In0.53Ga0.47As/In0.52Al0.48As heterostructure on silicon
Resumo:
Electrical transport in a modulation doped heterostructure of In0.53Ga0.47As/In0.52Al0.48As grown on Si by molecular beam epitaxy has been measured. Quantum Hall effect and Subnikov¿De Haas oscillations were observed indicating the two¿dimensional character of electron transport. A mobility of 20¿000 cm2/V¿s was measured at 6 K for an electron sheet concentration of 1.7×1012 cm¿2. Transmission electron microscopy observations indicated a significant surface roughness and high defect density of the InGaAs/InAlAs layers to be present due to the growth on silicon. In addition, fine¿scale composition modulation present in the In0.53Ga0.47As/In0.52Al0.48As may further limit transport properties.
Resumo:
Experimental and theoretical studies regarding noise processes in various kinds of AlGaAs/GaAs heterostructures with a quantum well are reported. The measurement processes, involving a Fast Fourier Transform and analog wave analyzer in the frequency range from 10 Hz to 1 MHz, a computerized data storage and processing system, and cryostat in the temperature range from 78 K to 300 K are described in detail. The current noise spectra are obtained with the “three-point method”, using a Quan-Tech and avalanche noise source for calibration. ^ The properties of both GaAs and AlGaAs materials and field effect transistors, based on the two-dimensional electron gas in the interface quantum well, are discussed. Extensive measurements are performed in three types of heterostructures, viz., Hall structures with a large spacer layer, modulation-doped non-gated FETs, and more standard gated FETs; all structures are grown by MBE techniques. ^ The Hall structures show Lorentzian generation-recombination noise spectra with near temperature independent relaxation times. This noise is attributed to g-r processes in the 2D electron gas. For the TEGFET structures, we observe several Lorentzian g-r noise components which have strongly temperature dependent relaxation times. This noise is attributed to trapping processes in the doped AlGaAs layer. The trap level energies are determined from an Arrhenius plot of log (τT2) versus 1/T as well as from the plateau values. The theory to interpret these measurements and to extract the defect level data is reviewed and further developed. Good agreement with the data is found for all reported devices. ^
Resumo:
Electronic noise has been investigated in AlxGa1−x N/GaN Modulation-Doped Field Effect Transistors (MODFETs) of submicron dimensions, grown for us by MBE (Molecular Beam Epitaxy) techniques at Virginia Commonwealth University by Dr. H. Morkoç and coworkers. Some 20 devices were grown on a GaN substrate, four of which have leads bonded to source (S), drain (D), and gate (G) pads, respectively. Conduction takes place in the quasi-2D layer of the junction (xy plane) which is perpendicular to the quantum well (z-direction) of average triangular width ∼3 nm. A non-doped intrinsic buffer layer of ∼5 nm separates the Si-doped donors in the AlxGa1−xN layer from the 2D-transistor plane, which affords a very high electron mobility, thus enabling high-speed devices. Since all contacts (S, D, and G) must reach through the AlxGa1−xN layer to connect internally to the 2D plane, parallel conduction through this layer is a feature of all modulation-doped devices. While the shunting effect may account for no more than a few percent of the current IDS, it is responsible for most excess noise, over and above thermal noise of the device. ^ The excess noise has been analyzed as a sum of Lorentzian spectra and 1/f noise. The Lorentzian noise has been ascribed to trapping of the carriers in the AlxGa1−xN layer. A detailed, multitrapping generation-recombination noise theory is presented, which shows that an exponential relationship exists for the time constants obtained from the spectral components as a function of 1/kT. The trap depths have been obtained from Arrhenius plots of log (τT2) vs. 1000/T. Comparison with previous noise results for GaAs devices shows that: (a) many more trapping levels are present in these nitride-based devices; (b) the traps are deeper (farther below the conduction band) than for GaAs. Furthermore, the magnitude of the noise is strongly dependent on the level of depletion of the AlxGa1−xN donor layer, which can be altered by a negative or positive gate bias VGS. ^ Altogether, these frontier nitride-based devices are promising for bluish light optoelectronic devices and lasers; however, the noise, though well understood, indicates that the purity of the constituent layers should be greatly improved for future technological applications. ^
Resumo:
Efforts to push the performance of transistors for millimeter-wave and microwave applications have borne fruit through device size scaling and the use of novel material systems. III-V semiconductors and their alloys hold a distinct advantage over silicon because they have much higher electron mobility which is a prerequisite for high frequency operation. InGaAs/InP pseudomorphic heterojunction bipolar transistors (HBTs) have demonstrated fT of 765 GHz at room temperature and InP based high electron mobility transistors (HEMTs) have demonstrated fMax of 1.2 THz. The 6.1 A lattice family of InAs, GaSb, AlSb covers a wide variety of band gaps and is an attractive future material system for high speed device development. Extremely high electron mobilities ~ 30,000 cm^2 V^-1s^-1 have been achieved in modulation doped InAs-AlSb structures. The work described in this thesis involves material characterization and process development for HEMT fabrication on this material system.
Resumo:
We report what we believe to be the first experimental study of inter-modal cross-gain modulation and associated transient effects as different spatial modes and wavelength channels are added and dropped within a two-mode amplifier for SDM transmission.
Resumo:
We report what we believe to be the first experimental study of inter-modal cross-gain modulation and associated transient effects as different spatial modes and wavelength channels are added and dropped within a two-mode amplifier for SDM transmission.
Resumo:
Field-swept pulsed electron paramagnetic resonance (EPR) spectra of a ZBLAN fluoride glass doped with a low concentration of Cr3+ are obtained using echo-detected EPR and hole-burning free induction decay detection. We review the utility of the pulsed EPR technique in generating field-swept EPR spectra, as well as some of the distorting effects that are peculiar to the pulsed detection method. The application of this technique to Cr3+-doped ZBLAN reveals that much of the broad resonance extending from g(eff) = 5.1 to g(eff) = 1.97, characteristic of X-band continuous wave EPR of Cr3+ in glasses, is absent. We attribute this largely to the variation in nutation frequencies across the spectrum that result from sites possessing large fine structure interactions. The description of the spin dynamics of such sites is complicated and we discuss some possible approaches to the simulation of the pulsed EPR spectra.
Resumo:
An open cell photoacoustic (PA) configuration has been employed to evaluate the thermal diffusivity of intrinsic InP as well as InP doped with tin and iron. Thermal diffusivity data have been evaluated from variation of phase of PA signal as a function of modulation frequency. In doped samples, we observe a reduced value for thermal diffusivity in comparison with intrinsic InP. We also observed that, while the phase of the PA signal varies linearly with the square root of chopping frequency for doped samples, the intrinsic material does not exhibit such behaviour in the experimental frequency range. These results have been interpreted in terms of the heat generation and phonon assisted heat diffusion mechanisms in semiconductors.
Resumo:
In this paper, we present a laser-induced photoacoustic study on the photostability of laser dye Coumarin 540 doped in PMMA matrix and modified by the incorporation of low-molecular weight additives. The dependence of photostability of the dye on various experimental conditions, such as nature of solvents, incident optical power and dye concentration, is investigated in detail. The activation rates for the bleaching process are calculated for different concentrations and they suggest the possibility of two distinct mechanisms responsible for photodegradation. Further, analysis of the data confirms the linear dependence of photodegradation on the intensity of incident radiation. The role of different externally influencing parameters, such as wavelength and modulation frequency of incident radiation, is also discussed.
Resumo:
The photosensitivity of dye mixture-doped polymethyl methacrylate (PMMA) films are investigated as a function of laser power, concentration of the dyes, modulation frequency and the irradiation wavelength. Energy transfer from a donor molecule to an acceptor molecule affects the emission output of the dye mixture system. Photosensitivity is found to change with changes in donor–acceptor concentrations. PMMA samples doped with the dye mixture are found to be more photosensitive when the dyes are mixed in the same proportion.
Resumo:
Nonlinear absorption and amplification of a probe laser beam can be controlled by adjustment of the intensity-modulation frequency and the wavelength of a pump laser beam. A demonstration of this effect in Er3+-doped fluoroindate glass is presented. The results show maximum amplification of the probe beam (∼12%) when a pump laser emitting 16 mW of power is modulated at ∼30 Hz. In the limit of low modulation frequencies, or cw pumping, induced absorption of the probe beam is the dominant nonlinear process. © 1999 Optical Society of America.
Resumo:
We experimentally demonstrate pabively Q-switched erbium-doped fiber laser (EDFL) operation using a saturable absorber (SA) based on Fe3O4 nanoparticles (FONPs). As a type of transition metal oxide, the FONPs have a large nonlinear optical response and fast response time. The FONPbased SA pobebes a modulation depth of 8.2% and nonsaturable absorption of 56.6%. Stable pabively Q-switched EDFL pulses with an output pulse energy of 23.76 nJ, a repetition rate of 33.3 kHz, and a pulse width of 3.2 μs were achieved when the input pump power was 110mW. The laser features a low threshold pump power of > 15mW.
Resumo:
This thesis aims to investigate the interaction of acoustic waves and fiber Bragg gratings (FBGs) in standard and suspended-core fibers (SCFs), to evaluate the influence of the fiber, grating and modulator design on the increase of the modulation efficiency, bandwidth and frequency. Initially, the frequency response and the resonant acoustic modes of a low frequency acousto-optic modulator (f < 1.2 MHz) are numerically investigated by using the finite element method. Later, the interaction of longitudinal acoustic waves and FBGs in SCFs is also numerically investigated. The fiber geometric parameters are varied and the strain and grating properties are simulated by means of the finite element method and the transfer matrix method. The study indicates that the air holes composing the SCF cause a significant reduction of the amount of silica in the fiber cross section increasing acousto-optic interaction in the core. Experimental modulation of the reflectivity of FBGs inscribed in two distinct SCFs indicates evidences of this increased interaction. Besides, a method to acoustically induce a dynamic phase-shift in a chirped FBG employing an optimized design of modulator is shown. Afterwards, a combination of this modulator and a FBG inscribed in a three air holes SCF is applied to mode-lock an ytterbium doped fiber laser. To improve the modulator design for future applications, two other distinct devices are investigated to increase the acousto-optic interaction, bandwidth and frequency (f > 10 MHz). A high reflectivity modulation has been achieved for a modulator based on a tapered fiber. Moreover, an increased modulated bandwidth (320 pm) has been obtained for a modulator based on interaction of a radial long period grating (RLPG) and a FBG inscribed in a standard fiber. In summary, the results show a considerable reduction of the grating/fiber length and the modulator size, indicating possibilities for compact and faster acousto-optic fiber devices. Additionally, the increased interaction efficiency, modulated bandwidth and frequency can be useful to shorten the pulse width of future all-fiber mode-locked fiber lasers, as well, to other photonic devices which require the control of the light in optical fibers by electrically tunable acoustic waves.
Resumo:
Ni(1-x)FexO nanoparticles have been obtained by the co-precipitation chemical route. X-ray diffraction analyses using Rietveld refinement have shown a slight decrease in the microstrain and mean particle size as a function of the Fe content. The zero-field-cooling (ZFC) and field-cooling (FC) magnetization curves show superparamagnetic behavior at high temperatures and a low temperature peak (at T = 11 K), which is enhanced with increasing Fe concentration. Unusual behavior of the coercive field in the low temperature region and an exchange bias behavior were also observed. A decrease in the Fe concentration induces an increase in the exchange bias field. We argue that these behaviors can be linked with the strengthening of surface anisotropy caused by the incorporation of Fe ions.