1000 resultados para Modelos neuronais
Resumo:
Dissertação para obtenção do Grau de Mestre em Mestrado Integrado em Engenharia Electrotécnica e de Computadores
Resumo:
Dissertação de dout. em Electrónica e Computação, Faculdade de Ciências e Tecnologia, Univ. do Algarve, 2004
Resumo:
Dissertação apresentada como requisito parcial para obtenção do grau de Mestre em Estatística e Gestão de Informação
Resumo:
Uma rede neuronal artificial consiste no processamento de elementos (análogos aos neurónios do sistema neuronal biológico) inter conectados em rede. As redes neuronais artificiais possuem duas grandes forças: por um lado, são instrumentos poderosos na modelização e compreensão do comportamento cognitivo humano; por outro, têm fortes propriedades de reconhecimento de padrões, sendo capazes de reconhecer padrões mesmo entre dados variáveis, ambíguos e confusos (Refenes, 1995, citado por Koskivaara, 2000). Por esta razão, a aplicação desta nova tecnologia à auditoria tem vindo a acentuar-se. O objectivo deste trabalho consiste em apresentar os fundamentos das redes neuronais artificiais, bem como as principais áreas de aplicação à auditoria. Entre estas descata-se a detecção de erros materialmente relevantes. Os auditores estabelecem a natureza, extensão, profundidade e oportunidade dos procedimentos de auditoria com base na investigação resultante de flutuações e relações que sejam inconsistentes com outra informação relevante ou que se desviem de quantias previstas. Ora, os modelos de rede neuronais permitem captar padrões relevantes detectados na informação financeira, estabelecendo correlações entre os dados dificilmente percepcionadas pelos meios tradicionalmente utilizados pelos auditores. Outras áreas da auditoria em que as redes neuronais se têm mostrado instrumentos válidos de auxílio ao julgamento dos auditores são a avaliação do risco de gestão fraudulenta, a avaliação do princípio da continuidade e a avaliação do controlo interno da entidade auditada.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia de Eletrónica e Telecomunicações
Resumo:
Dissertação apresentada como requisito parcial para obtenção do grau de Mestre em Ciência e Sistemas de Informação Geográfica
Resumo:
Numa Estação de Tratamento de Águas Residuais (ETAR), a otimização do processo de Digestão Anaeróbia (DA) é fundamental para o aumento da produção de biogás, que por sua vez é convertido em energia, essencial para a rentabilidade de exploração de ETAR. No entanto, a complexidade do processo de Digestão Anaeróbia das lamas constitui um obstáculo à sua otimização. Com este trabalho pretende-se efetuar a análise e tratamento de dados de Digestão Anaeróbia, com recurso a Redes Neuronais Artificiais (RNA), contribuindo, desta forma, para a compreensão do processo e do impacto de algumas variáveis na produção de biogás. As Redes Neuronais Artificiais são modelos matemáticos computacionais inspirados no funcionamento do cérebro humano, com capacidade para entender relações complexas num determinado conjunto de dados, motivo por que se optou pela sua utilização na procura de soluções que permitem predizer o comportamento de uma DA. Para o desenvolvimento das RNA utilizou-se o programa NeuralToolsTM da PalisadeTM. Como caso de estudo, a metodologia foi aplicada ao Digestor A da ETAR Sul da SIMRIA, empresa onde teve lugar o estágio curricular que originou o presente trabalho. Nesse contexto, utilizaram-se dados com informação referente aos últimos dois anos de funcionamento do digestor, disponíveis na empresa. Apesar de se terem verificado certas limitações, na predição em alguns casos particulares, de um modo geral, considera-se que os resultados obtidos permitiram concluir que as redes neuronais modeladas apresentam boa capacidade de generalização na imitação do processo anaeróbio. Conclui-se, portanto, que o estudo realizado pode constituir um contributo com interesse para a otimização da produção do biogás na DA de ETAR Sul da SIMRIA e que a utilização de RNA poderá ser uma ferramenta a explorar, quer nessa área, quer noutras áreas de gestão de sistemas de saneamento básico.
Resumo:
Dissertação apresentada como requisito parcial de obtenção do grau de Mestre em Estatística e Gestão de Informação
Resumo:
Trabalho Final de mestrado para obtenção do grau de Mestre em engenharia Mecância
Resumo:
A presente dissertação tem como propósito a definição das características de um modelo prognóstico,utilizando uma rede neuronal, em doentes com patologia Cirúrgica, internados num serviço de Cirurgia Geral. Para esse fim obtive dados clínicos, operatórios, o resultado da intervenção e o tempo de internamento pós-operatório em doentes submetidos a um leque amplo de intervenções de Cirurgia abdominal. Construí um sistema computacional baseado em redes neuronais, utilizando os paradigmas considerados mais adequados para o tipo de variável a prever. Analisei em seguida o desempenho dos modelos obtidos. Construí um programa capaz de recolher os dados clínicos e apresentar o resultado da sua avaliação pelas redes neuronais criadas, sem envolver o seu utilizador nos aspectos técnicos da manipulação das redes neuronais. Para cumprimento desta estratégia procurei atingir os seguintes objectivos: Recolher dados de identificação, manifestações clínicas, tipo de doença(s), diagnósticos, características da intervenção cirúrgica e resultado, referentes a um conjunto de doentes suficiente para a construção de uma rede neuronal, com o número de variáveis empregue. Construir uma base de dados com os elementos de informação assim obtidos. Eliminar todos os casos em que se verificou faltar um elemento de informação. Criar dois grupos de casos, mutuamente exclusivos, para construção e validação das redes neuronais. Criar, com base nos elementos diagnósticos e resultado, 7 grupos não exclusivos, para avaliação das redes criadas. Avaliar estatisticamente as características dos grupos criados, para os comparar e caracterizar. Proceder à escolha de um programa para criação de redes neuronais em função da variedade de paradigmas oferecidos, facilidade de utilização, uso diversificado em diversos ambientes e mercados e a possibilidade de aceder às redes criadas, através de uma linguagem de programação de alto nível. Construir três tipos de redes diferentes. Cada tipo de rede utilizando um algoritmo diferente e adequado ao tipo de variável que se deseja prever. Avaliar as redes no que se refere à sua sensibilidade, especificidade, capacidade discriminativa e calibração. Criar um programa,usando a linguagem de programação "Delphi"©, para captura de dados, articulação dos mesmos com as redes neuronais criadas e expressão dos resultados prognósticos; esse programa permite alterar os valores dos elementos clínicos e verificar a repercussão dessa alteração no prognóstico.
Resumo:
Numa Estação de Tratamento de Águas Residuais (ETAR), são elevados os custos não só de tratamento das águas residuais como também de manutenção dos equipamentos lá existentes, nesse sentido procura-se utilizar processos capazes de transformar os resíduos em produtos úteis. A Digestão Anaeróbia (DA) é um processo atualmente disponível capaz de contribuir para a redução da poluição ambiental e ao mesmo tempo de valorizar os subprodutos gerados. Durante o processo de DA é produzido um gás, o biogás, que pode ser utilizado como fonte de energia, reduzindo assim a dependência energética da ETAR e a emissão de gases com efeito de estufa para a atmosfera. A otimização do processo de DA das lamas é essencial para o aumento da produção de biogás, mas a complexidade do processo constitui um obstáculo à sua otimização. Neste trabalho, aplicaram-se Redes Neuronais Artificiais (RNA) ao processo de DA de lamas de ETAR. RNA são modelos simplificados inspirados no funcionamento das células neuronais humanas e que adquirem conhecimento através da experiência. Quando a RNA é criada e treinada, produz valores de output aproximadamente corretos para os inputs fornecidos. Foi esse o motivo para recorrer a RNA na otimização da produção de biogás no digestor I da ETAR Norte da SIMRIA, usando o programa NeuralToolsTM da PalisadeTM para desenvolvimento das RNA. Para tal, efetuou-se uma análise e tratamento de dados referentes aos últimos quatro anos de funcionamento do digestor. Os resultados obtidos permitiram concluir que as RNA modeladas apresentam boa capacidade de generalização do processo de DA. Considera-se que este caso de estudo é promissor, fornecendo uma boa base para o desenvolvimento de modelos eventualmente mais gerais de RNA que, aplicado conjuntamente com as características de funcionamento de um digestor e o processo de DA, permitirá otimizar a produção de biogás em ETAR.
Resumo:
Dissertação apresentada como requisito parcial para obtenção do grau de Mestre em Estatística e Gestão de Informação.
Resumo:
Numa sociedade com elevado consumo energético, a dependência de combustíveis fósseis em evidente diminuição de disponibilidades é um tema cada vez mais preocupante, assim como a poluição atmosférica resultante da sua utilização. Existe, portanto, uma necessidade crescente de recorrer a energias renováveis e promover a otimização e utilização de recursos. A digestão anaeróbia (DA) de lamas é um processo de estabilização de lamas utilizado nas Estações de Tratamento de Águas Residuais (ETAR) e tem, como produtos finais, a lama digerida e o biogás. Maioritariamente constituído por gás metano, o biogás pode ser utilizado como fonte de energia, reduzindo, deste modo, a dependência energética da ETAR e a emissão de gases com efeito de estufa para a atmosfera. A otimização do processo de DA das lamas é essencial para o aumento da produção de biogás. No presente relatório de estágio, as Redes Neuronais Artificiais (RNA) foram aplicadas ao processo de DA de lamas de ETAR. As RNA são modelos simplificados inspirados no funcionamento das células neuronais humanas e que adquirem conhecimento através da experiência. Quando a RNA é criada e treinada, produz valores de output aproximadamente corretos para os inputs fornecidos. Uma vez que as DA são um processo bastante complexo, a sua otimização apresenta diversas dificuldades. Foi esse o motivo para recorrer a RNA na otimização da produção de biogás nos digestores das ETAR de Espinho e de Ílhavo da AdCL, utilizando o software NeuralToolsTM da PalisadeTM, contribuindo, desta forma, para a compreensão do processo e do impacto de algumas variáveis na produção de biogás.
Resumo:
O principal objectivo deste trabalho assenta em desenvolver modelos de previsão de preços de commodities para assim comparar a capacidade preditiva da simulação de Monte Carlo com a das redes neuronais. A simulação de Monte Carlo é principalmente utilizada para avaliar as opções, já as redes neuronais são utilizadas para fazer previsões, classificações, clustering ou aproximação de funções. Os diversos modelos desenvolvidos foram aplicados na previsão do preço futuro do milho, petróleo, ouro e cobre. Sendo que os horizontes temporais testados neste trabalho foram 1 dia, 5 dias, 20 dias e 60 dias. Através da análise do erro absoluto médio percentual (MAPE) concluiu-se que no geral o modelo individual que apresentou um melhor desempenho preditivo foram as redes neuronais. Contudo, nas previsões a 1 e a 5 dias os resultados obtidos foram semelhantes para ambos os modelos. Para se tentar melhorar os resultados obtidos pelos modelos individuais foram aplicadas algumas técnicas de combinação de modelos. A combinação de modelos demonstrou no geral capacidade para melhorar os resultados dos modelos individuais, porém apenas para o horizonte a 60 dias é que os resultados melhoraram significativamente.
Resumo:
O conhecimento do comportamento das barragens de aterro é essencial para garantir o seu funcionamento adequado e para que os objetivos de utilização delineados inicialmente para o respetivo aproveitamento hidráulico possam ser cumpridos. Os fatores de maior relevância num estudo deste tipo de barragens, considerando que apenas estão sob solicitações estáticas, são as pressões de água, registadas em piezómetros, os caudais percolados e os deslocamentos superficiais, geralmente medidos em marcas de nivelamento ou em alvos colocados em peças de centragem forçada. Na presente dissertação pretende-se, com base no conhecimento dos registos dessas medições feitas anteriormente e recorrendo a modelos de inteligência artificial, predizer o valor que se obteria em próximas medições, ajudando assim a decidir qual o melhor procedimento para remediar ou tratar um problema de comportamento relacionado com as variáveis em estudo. Esta dissertação divide-se essencialmente em três partes. Primeiramente, introduzem-se os conceitos relativos à segurança de barragens de aterro, de acordo com o regulamento de segurança adotado em Portugal, dando relevo ao tipo de observação a que são submetidas. Seguidamente, introduz-se o conceito de redes neuronais artificiais e apresenta-se a base de dados, criada com o intuito de uniformizar e melhorar a organização dos valores em estudo das barragens de aterro, que têm sido acompanhadas pelo Laboratório Nacional de Engenharia Civil. Com esta pretende-se facilitar a utilização destes elementos por programas de inteligência artificial. Por último, é feito o enquadramento de um caso de estudo, uma barragem de aterro no Norte de Portugal – barragem de Valtorno-Mourão. Utilizando o Neuroph Studio, os dados relativos à observação desta barragem são aplicados numa rede neuronal artificial, Multi Layer Perceptron Backpropagation Neural Network, permitindo antever comportamentos futuros. Os resultados obtidos são discutidos e perspetivam-se trabalhos para continuar a desenvolver a investigação efetuada.