954 resultados para Modal Correction
Resumo:
High-speed free-space optical communication systems have recently used fiber-optical components. The coupling efficiency with which the received laser beam can be coupled into a single-mode fiber is noticeably limited by atmospheric turbulence due to the degradation of its spatial coherence. Fortunately, adaptive optics (AO) can alleviate this limitation by partially correcting the turbulence-distorted wavefront. The coupling efficiency improvement provided by Zernike modal AO correction is numerically evaluated. It is found that the first 3-20 corrected polynomials can considerably improve the fiber-coupling efficiency. The improvement brought by AO is compared with that brought by a coherent fiber array. Finally, a hybrid technique that integrates AO and a coherent fiber array is proposed. Results show that the hybrid technique outperforms each of the two above-mentioned techniques. (C) 2009 Elsevier GmbH. All rights reserved.
Resumo:
A time multiplexed rectangular Zernike modal wavefront sensor based on a nematic phase-only liquid crystal spatial light modulator and specially designed for a high power two-electrode tapered laser diode which is a compact and novel free space optical communication source is used in an adaptive beam steering free space optical communication system, enabling the system to have 1.25 GHz modulation bandwidth, 4.6° angular coverage and the capability of sensing aberrations within the system and caused by atmosphere turbulence up to absolute value of 0.15 waves amplitude and correcting them in one correction cycle. Closed-loop aberration correction algorithm can be implemented to provide convergence for larger and time varying aberrations. Improvement of the system signal-to-noise-ratio performance is achieved by aberration correction. To our knowledge, it is first time to use rectangular orthonormal Zernike polynomials to represent balanced aberrations for high power rectangular laser beam in practice. © 2014 IEEE.
Resumo:
Karaoke singing is a popular form of entertainment in several parts of the world. Since this genre of performance attracts amateurs, the singing often has artifacts related to scale, tempo, and synchrony. We have developed an approach to correct these artifacts using cross-modal multimedia streams information. We first perform adaptive sampling on the user's rendition and then use the original singer's rendition as well as the video caption highlighting information in order to correct the pitch, tempo and the loudness. A method of analogies has been employed to perform this correction. The basic idea is to manipulate the user's rendition in a manner to make it as similar as possible to the original singing. A pre-processing step of noise removal due to feedback and huffing also helps improve the quality of the user's audio. The results are described in the paper which shows the effectiveness of this multimedia approach.
Resumo:
An explicit Wiener-Hopf solution is derived to describe the scattering of duct modes at a hard-soft wall impedance transition in a circular duct with uniform mean flow. Specifically, we have a circular duct r = 1, - ∞ < x < ∞ with mean flow Mach number M > 0 and a hard wall along x < 0 and a wall of impedance Z along x > 0. A minimum edge condition at x = 0 requires a continuous wall streamline r = 1 + h(x, t), no more singular than h = Ο(x1/2) for x ↓ 0. A mode, incident from x < 0, scatters at x = 0 into a series of reflected modes and a series of transmitted modes. Of particular interest is the role of a possible instability along the lined wall in combination with the edge singularity. If one of the "upstream" running modes is to be interpreted as a downstream-running instability, we have an extra degree of freedom in the Wiener-Hopf analysis that can be resolved by application of some form of Kutta condition at x = 0, for example a more stringent edge condition where h = Ο(x3/2) at the downstream side. The question of the instability requires an investigation of the modes in the complex frequency plane and therefore depends on the chosen impedance model, since Z = Z (ω) is essentially frequency dependent. The usual causality condition by Briggs and Bers appears to be not applicable here because it requires a temporal growth rate bounded for all real axial wave numbers. The alternative Crighton-Leppington criterion, however, is applicable and confirms that the suspected mode is usually unstable. In general, the effect of this Kutta condition is significant, but it is particularly large for the plane wave at low frequencies and should therefore be easily measurable. For ω → 0, the modulus fends to |R001| → (1 + M)/(1 -M) without and to 1 with Kutta condition, while the end correction tends to ∞ without and to a finite value with Kutta condition. This is exactly the same behaviour as found for reflection at a pipe exit with flow, irrespective if this is uniform or jet flow.
Resumo:
The Spatial Light Modulator in a mode demultiplexer is used to measure the aberrations of the system in which it is installed before applying aberration correction to improve the insertion loss and modal extinction ratios. © 2013 OSA.
Resumo:
The Spatial Light Modulator in a mode demultiplexer is used to measure the aberrations of the system in which it is installed before applying aberration correction to improve the insertion loss and modal extinction ratios. © 2013 OSA.
Resumo:
The Spatial Light Modulator in a mode demultiplexer is used to measure the aberrations of the system in which it is installed before applying aberration correction to improve the insertion loss and modal extinction ratios. © 2013 OSA.
Resumo:
Tese de mestrado integrado em Engenharia Biomédica e Biofísica, apresentada à Universidade de Lisboa, através da Faculdade de Ciências, 2014
Resumo:
The correction procedure for Clarke's matrix, considering three-phase transmission line analyzes, is analyzed step by step in this paper, searching to improve the application of this procedure. Changing the eigenvectors as modal transformation matrices, Clarke's matrix has been applied to analyses for transposed and untransposed three-phase transmission line cases. It is based on the fact that Clarke's matrix is an eigenvector matrix for transposed three-phase transmission lines considering symmetrical and asymmetrical cases. Because of this, the application of this matrix has been analyzed considering untransposed three-phase transmission lines. In most of these cases, the errors related to the eigenvalues can be considered negligible. It is not true when it is analyzed the elements that are not in main diagonal of the quasi-mode matrix. This matrix is obtained from the application of Clarke's matrix. The quasi-mode matrix is correspondent to the eigenvalue matrix. Their off-diagonal elements represent couplings among the quasi-modes. So, the off-diagonal quasi-mode element relative values are not negligible when compared to the eigenvalues that correspond to the coupled quasi-modes. Minimizing these relative values, the correction procedure is analyzed in detail, checking some alternatives for the correction procedure application.
Resumo:
The results presented in this paper are based on a research about the application of approximated transformation matrices for electromagnetic transient analyses and simulations in transmission lines. Initially, it has developed the application of a single real transformation matrix for a double three-phase transmission lines, because the symmetry of the distribution of the phase conductors and the ground wires. After this, the same type of transformation matrix has applied for symmetrical single three-phase transmission lines. Analyzing asymmetrical single three-phase lines, it has used three different line configurations. For these transmission line types, the errors between the eigenvalues and the approximated results, called quasi modes, have been considered negligible. on the other hand, the quasi mode eigenvalue matrix for each case was not a diagonal one. and the relative values of the off-diagonal elements of the approximated quasi mode matrix are not negligible, mainly for the low frequencies. Based on this problem, a correction procedure has been applied for minimizing the mentioned relative values. For the correction procedure application, symmetrical and asymmetrical single three-phase transmission line samples have been used. Checking the correction procedure results, analyses and simulations have been carried out in mode and time domain. In this paper, the last results of mentioned research are presented and they related to the time domain simulations.
Resumo:
Some constant matrices can be used as phase-mode transformation matrices for transposed three-phase transmission lines. Clarke's matrix is one of these options. Its application as a phase-mode transformation matrix for untransposed three-phase transmission lines has been analyzed through error and frequency scan comparisons. Based on an actual untransposed asymmetrical three-phase transmission line example, a correction procedure is applied searching for better results from the Clarke's matrix applicaton as a phase-mode transformation matrix. The error analyses are carried out using Clarke's matrix and the new transformation matrices obtained from the correction procedure. Applying Clarke's matrix, the relative errors of the eigenvalue matrix elements can be considered negligible and the relative values of the off-diagonal elements are significant. If the the corrected transformation matrices are used, the relative values of the off-diagonal elements are decreased. Based on the results of these analyses, the homopolar mode is more sensitive to the frequency influence than the two other modes related to three-phase lines. © 2007 IEEE.
Resumo:
Interface discontinuity factors based on the Generalized Equivalence Theory are commonly used in nodal homogenized diffusion calculations so that diffusion average values approximate heterogeneous higher order solutions. In this paper, an additional form of interface correction factors is presented in the frame of the Analytic Coarse Mesh Finite Difference Method (ACMFD), based on a correction of the modal fluxes instead of the physical fluxes. In the ACMFD formulation, implemented in COBAYA3 code, the coupled multigroup diffusion equations inside a homogenized region are reduced to a set of uncoupled modal equations through diagonalization of the multigroup diffusion matrix. Then, physical fluxes are transformed into modal fluxes in the eigenspace of the diffusion matrix. It is possible to introduce interface flux discontinuity jumps as the difference of heterogeneous and homogeneous modal fluxes instead of introducing interface discontinuity factors as the ratio of heterogeneous and homogeneous physical fluxes. The formulation in the modal space has been implemented in COBAYA3 code and assessed by comparison with solutions using classical interface discontinuity factors in the physical space