804 resultados para Mobile Testbed
Resumo:
The paper in hand presents a mobile testbed –namely the Heavy Duty Planetary Rover (HDPR)– that was designed and constructed at the Automation and Robotics Laboratories (ARL) of the European Space Agency to fulfill the lab’s internal needs in the context of long range rover exploration as well as in order to provide the means to perform in situ testing of novel algorithms. We designed a rover that: a) is able to reliably perform long range routes, and b) carries an abundant of sensors (both current rover technology and futuristic ones). The testbed includes all the additional hardware and software (i.e. ground control station, UAV, networking, mobile power) to allow the prompt deployment on the field. The reader can find in the paper the description of the system as well as a report on our experiences during our first experiments with the testbed.
Resumo:
Media content distribution on-demand becomes more complex when performed on a mass scale involving various channels with distinct and dynamic network characteristics, and, deploying a variety of terminal devices offering a wide range of capabilities. It is practically impossible to create and prepackage various static versions of the same content to match all the varying demand parameters of clients for various contexts. In this paper we present a profiling management approach for dynamically personalised media content delivery on-demand integrated with the AXMEDIS Framework. The client profiles comprise the representation of User, Device, Network and Context of content delivery based on MPEG-21:DIA. Although the most challenging proving ground for this personalised content delivery has been the mobile testbed i.e. the distribution to mobile handsets, the framework described here can be deployed for disribution, by the AXMEDIS PnP module, through other channels e.g. satellite, Internet to a range of client terminals e.g. desktops, kiosks, IPtv and other terrminals whose baseline terminal capabilities can be made availabe by the manufacturers as is normal.
Resumo:
The promise of a truly mobile experience is to have the freedom to roam around anywhere and not be bound to a single location. However, the energy required to keep mobile devices connected to the network over extended periods of time quickly dissipates. In fact, energy is a critical resource in the design of wireless networks since wireless devices are usually powered by batteries. Furthermore, multi-standard mobile devices are allowing users to enjoy higher data rates with ubiquitous connectivity. However, the bene ts gained from multiple interfaces come at a cost in terms of energy consumption having profound e ect on the mobile battery lifetime and standby time. This concern is rea rmed by the fact that battery lifetime is one of the top reasons why consumers are deterred from using advanced multimedia services on their mobile on a frequent basis. In order to secure market penetration for next generation services energy e ciency needs to be placed at the forefront of system design. However, despite recent e orts, energy compliant features in legacy technologies are still in its infancy, and new disruptive architectures coupled with interdisciplinary design approaches are required in order to not only promote the energy gain within a single protocol layer, but to enhance the energy gain from a holistic perspective. A promising approach is cooperative smart systems, that in addition to exploiting context information, are entities that are able to form a coalition and cooperate in order to achieve a common goal. Migrating from this baseline, this thesis investigates how these technology paradigm can be applied towards reducing the energy consumption in mobile networks. In addition, we introduce an additional energy saving dimension by adopting an interlayer design so that protocol layers are designed to work in synergy with the host system, rather than independently, for harnessing energy. In this work, we exploit context information, cooperation and inter-layer design for developing new energy e cient and technology agnostic building blocks for mobile networks. These technology enablers include energy e cient node discovery and short-range cooperation for energy saving in mobile handsets, complemented by energy-aware smart scheduling for promoting energy saving on the network side. Analytical and simulations results were obtained, and veri ed in the lab on a real hardware testbed. Results have shown that up to 50% energy saving could be obtained.
Resumo:
Mobile devices are now capable of supporting a wide range of applications, many of which demand an ever increasing computational power. To this end, mobile cloud computing (MCC) has been proposed to address the limited computation power, memory, storage, and energy of such devices. An important challenge in MCC is to guarantee seamless discovery of services. To this end, this thesis proposes an architecture that provides user-transparent and low-latency service discovery, as well as automated service selection. Experimental results on a real cloud computing testbed demonstrated that the proposed work outperforms state of-the-art approaches by achieving extremely low discovery delay.
Resumo:
In the last decade, multi-sensor data fusion has become a broadly demanded discipline to achieve advanced solutions that can be applied in many real world situations, either civil or military. In Defence,accurate detection of all target objects is fundamental to maintaining situational awareness, to locating threats in the battlefield and to identifying and protecting strategically own forces. Civil applications, such as traffic monitoring, have similar requirements in terms of object detection and reliable identification of incidents in order to ensure safety of road users. Thanks to the appropriate data fusion technique, we can give these systems the power to exploit automatically all relevant information from multiple sources to face for instance mission needs or assess daily supervision operations. This paper focuses on its application to active vehicle monitoring in a particular area of high density traffic, and how it is redirecting the research activities being carried out in the computer vision, signal processing and machine learning fields for improving the effectiveness of detection and tracking in ground surveillance scenarios in general. Specifically, our system proposes fusion of data at a feature level which is extracted from a video camera and a laser scanner. In addition, a stochastic-based tracking which introduces some particle filters into the model to deal with uncertainty due to occlusions and improve the previous detection output is presented in this paper. It has been shown that this computer vision tracker contributes to detect objects even under poor visual information. Finally, in the same way that humans are able to analyze both temporal and spatial relations among items in the scene to associate them a meaning, once the targets objects have been correctly detected and tracked, it is desired that machines can provide a trustworthy description of what is happening in the scene under surveillance. Accomplishing so ambitious task requires a machine learning-based hierarchic architecture able to extract and analyse behaviours at different abstraction levels. A real experimental testbed has been implemented for the evaluation of the proposed modular system. Such scenario is a closed circuit where real traffic situations can be simulated. First results have shown the strength of the proposed system.
Resumo:
This paper reports on a study that investigates the emotions elicited from appraising SMS-based mobile marketing (m-marketing) communications under three marketing conditions: product consistency, incentives and permission giving. Results from the experimental design show that appraising m-marketing communications elicits both single emotions and mixed emotions; that is, a mixture of positive and negative emotions in the same response. Additionally, the results show that the influence of specific marketing conditions may increase or reduce the intensity of the emotions elicited. This study contributes to marketing practice by examining consumer appraisals of m-marketing communications under different combinations of marketing conditions. The results provide insights into which emotions are likely to be elicited as a result, and how a specific marketing condition might influence their levels of intensity. The study contributes to marketing theory also through combining appraisal theory with Richins (1997) consumption emotion set.
Resumo:
This paper reports on a Q-methodology study on the consumption of mobile phones and opinions on SMS-marketing, extracted from interpretive interviews and focus groups. The Metaphors Q-sort, developed within a framework of Holt's (1995) four metaphors of consumption, identifies three experiential value clusters in the consumption of mobile phones: the Mobile Pragmatists, the Mobile Connectors and the Mobile Revelers. The SMS-marketing Q-sort identifies two key clusters of subjective opinions on various aspects of SMS-based mobile-marketing. By integrating the findings from these two Q-sorts, we demonstrate that while all three value clusters express positive opinions towards ‘location specific’ and ‘customer initiated contact’ SMS-marketing, there are noticeable differences in how marketers should develop their strategies to maximize the consumers’ perceived experiential value derived from the consumption of their mobile phones. Keywords: mobile phones; experiential consumption: SMS-marketing; Q-methodology