903 resultados para Mixing rule


Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this work, thermodynamic models for fitting the phase equilibrium of binary systems were applied, aiming to predict the high pressure phase equilibrium of multicomponent systems of interest in the food engineering field, comparing the results generated by the models with new experimental data and with those from the literature. Two mixing rules were used with the Peng-Robinson equation of state, one with the mixing rule of van der Waals and the other with the composition-dependent mixing rule of Mathias et al. The systems chosen are of fundamental importance in food industries, such as the binary systems CO(2)-limonene, CO(2)-citral and CO(2)-linalool, and the ternary systems CO(2)-Limonene-Citral and CO(2)-Limonene-Linalool, where high pressure phase equilibrium knowledge is important to extract and fractionate citrus fruit essential oils. For the CO(2)-limonene system, some experimental data were also measured in this work. The results showed the high capability of the model using the composition-dependent mixing rule to model the phase equilibrium behavior of these systems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The caffeine solubility in supercritical CO2 was studied by assessing the effects of pressure and temperature on the extraction of green coffee oil (GCO). The Peng-Robinson¹ equation of state was used to correlate the solubility of caffeine with a thermodynamic model and two mixing rules were evaluated: the classical mixing rule of van der Waals with two adjustable parameters (PR-VDW) and a density dependent one, proposed by Mohamed and Holder² with two (PR-MH, two parameters adjusted to the attractive term) and three (PR-MH3 two parameters adjusted to the attractive and one to the repulsive term) adjustable parameters. The best results were obtained with the mixing rule of Mohamed and Holder² with three parameters.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work provides experimental phase diagram of mitotane, a drug used in the chemotherapy treatment of adrenocortical carcinoma, in compressed and/or supercritical CO(2). The synthetic-static method in a high-pressure variable-volume view cell coupled with a transmitted-light intensity probe was used to measure the solid-fluid (SF) equilibrium data. The phase equilibrium experiments were determined in temperature ranging from (298.2 to 333.1) K and pressure up to 22 MPa. Peng-Robinson equation of state (PR-EoS) with classical mixing rule was used to correlate the experimental data. Excellent agreement was found between experimental and calculated values. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Solubilities of red 153, (3-[[4-[[5,6(or 6,7)-dichloro-2-benzothiazolyl]azo]phenyl]ethylamino]propanenitrile), an azo compound, and disperse blue1 (1,4,5,8-tetraaminoantraquinone) in supercritical carbon dioxide (SC CO(2)) were measured at T = (333.2 to 393.2) K over the pressure range (12.0 to 40.0) MPa by a flow type apparatus. The solubility of red 153 (0.985. 10(-6) to 37.2. 10(-6)) in the overall region of measurements is found to be significantly higher than that of disperse blue 1 (1.12.10(-7) to 4.89.10(-7)). The solubility behavior of disperse red 153 follows the general solubility trend displayed by disperse dyes with a crossover pressure at about 20 MPa. On the other hand, blue 1, which is a disperse anthraquinone dye, exhibits unexpected behavior not recorded previously there is no crossover pressure at the temperature and pressure ranges studied, and the dye's solubility at T = 333.2 K practically does not increase with pressure. To the best of our knowledge, there are no previous measurements of blue 1 solubility in SC CO(2) reported in the literature. The experimental data were correlated by using the Soave Redlich Kwong equation of state (EoS) with the one-fluid van der Waals mixing rule, and an acceptable correlation of the solubility data for both dyes was obtained.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dissertação apresentada para a obtenção do grau de Doutor em Engenharia Química, especialidade Engenharia da Reacção Química, pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The objective of the work presented in this thesis was the development of an innovative approach for the separation of enantiomers of secondary alcohols, combining the use of an ionic liquid (IL) - both as solvent for conducting enzymatic kinetic resolution and as acylating agent - with the use of carbon dioxide (CO2) as solvent for extraction. Menthol was selected for testing this reaction/separation approach due to the increasing demand for this substance, which is widely used in the pharmaceutical, cosmetics and food industries. With a view to using an ionic ester as acylating agent, whose conversion led to the release of ethanol, and due to the need to remove this alcohol so as to drive reaction equilibrium forward, a phase equilibrium study was conducted for the ehtanol/(±)-menthol/CO2 system, at pressures between 8 and 10 MPa and temperatures between 40 and 50 oC. It was found that CO2 is more selective towards ethanol, especially at the lowest pressure and highest temperature tested, leading to separation factors in the range 1.6-7.6. The pressure-temperature-composition data obtained were correlated with the Peng-Robinson equation of state and the Mathias-Klotz-Prausnitz mixing rule. The model fit the experimental results well, with an average absolute deviation (AAD) of 3.7 %. The resolution of racemic menthol was studied using two lipases, namely lipase from Candida rugosa (CRL) and immobilized lipase B from Candida antarctica (CALB), and two ionic acylating esters. No reaction was detected in either case. (R,S)-1-phenylethanol was used next, and it was found that with CRL low, nonselective, conversion of the alcohol took place, whereas CALB led to an enantiomeric excess (ee) of the substrate of 95%, at 30% conversion. Other acylating agents were tested for the resolution of (±)-menthol, namely vinyl esters and acid anhydrides, using several lipases and varying other parameters that affect conversion and enantioselectivity, such as substrate concentration, solvent and temperature. One such acylating agent was propionic anhydride. It was thus performed a phase equilibrium study on the propionic anhydride/CO2 system, at temperatures between 35 and 50 oC. This study revealed that, at 35 oC and pressures from 7 MPa, the system is monophasic for all compositions. The enzymatic catalysis studies carried out with propionic anhydride revealed that the extent of noncatalyzed reaction was high, with a negative effect on enantioselectivity. These studies showed also that it was possible to reduce considerably the impact of the noncatalyzed reaction relative to the reaction catalyzed by CRL by lowering temperature to 4 oC. Vinyl decanoate was shown to lead to the best results at conditions amenable to a process combining the use of supercritical CO2 as agent for post-reaction separation. The use of vinyl decanoate in a number of IL solvents, namely [bmim][PF6], [bmim][BF4], [hmim][PF6], [omim][PF6], and [bmim][Tf2N], led to an enantiomeric excess of product (eep) values of over 96%, at about 50% conversion, using CRL. In n-hexane and supercritical CO2, reaction progressed more slowly.(...)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The caffeine solubility in supercritical CO2 was studied by assessing the effects of pressure and temperature on the extraction of green coffee oil (GCO). The Peng-Robinson¹ equation of state was used to correlate the solubility of caffeine with a thermodynamic model and two mixing rules were evaluated: the classical mixing rule of van der Waals with two adjustable parameters (PR-VDW) and a density dependent one, proposed by Mohamed and Holder² with two (PR-MH, two parameters adjusted to the attractive term) and three (PR-MH3 two parameters adjusted to the attractive and one to the repulsive term) adjustable parameters. The best results were obtained with the mixing rule of Mohamed and Holder² with three parameters.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This dissertation aims to assess the representativeness of the manual chilled mirror analyzer (model II Chanscope 13-1200-CN-2) used for the determination of condensed hydrocarbons of natural gas compared to the indirect methods, based on thermodynamic models equation of state. Additionally, it has been implemented in this study a model for calculating the dew point of natural gas. The proposed model is a modification of the equation of state of Peng-Robinson admits that the groups contribution as a strategy to calculate the binary interaction parameters kij (T) temperature dependence. Experimental data of the work of Brown et al. (2007) were used to compare the responses of the dew point of natural gas with thermodynamic models contained in the UniSim process simulator and the methodology implemented in this study. Then two natural gas compositions were studied, the first being a standard gas mixture gravimetrically synthesized and, second, a mixture of processed natural gas. These experimental data were also compared with the results presented by UniSim process simulator and the thermodynamic model implemented. However, data from the manual analysis results indicated significant differences in temperature, these differences were attributed to the formation of dew point of water, as we observed the appearance of moisture on the mirror surface cooling equipment

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Das Phasenverhalten und die Grenzflächeneigenschaften vonPolymeren in superkritischer Lösung werden anhand einesvergröberten Kugel-Feder-Modells für das ReferenzsystemHexadekan-CO2 untersucht. Zur Bestimmung der Parameter imPotential setzt man die kritischen Punkte von Simulation undExperiment gleich. Wechselwirkungen zwischen beidenKomponenten werden durch eine modifizierteLorentz-Berthelot-Regel modelliert. Die Übereinstimmung mitden Experimenten ist sehr gut - insbesondere kann dasPhasendiagramm des Mischsystems inklusive kritischer Linienreproduziert werden. Ein Vergleich mit numerischenStörungsrechnungen (TPT1) liefert eine qualitativeÜbereinstimmung und Hinweise zur Verbesserung derverwendeten Zustandsgleichung. Aufbauend auf diesen Betrachtungen werden die Frühstadiender Keimbildung untersucht. Für das Lennard-Jones-Systemwird zum ersten Mal der Übergang vom homogenen Gas zu einemeinzelnen Tropfen im endlichen Volumen direkt nachgewiesenund quantifiziert. Die freie Energie von kleinen Clusternwird mit einem einfachen, klassischen Nukleationsmodellbestimmt und nach oben abgeschätzt. Die vorgestellten Untersuchungen wurden durch eineWeiterentwicklung des Umbrella-Sampling-Algorithmusermöglicht. Hierbei wird die Simulation in mehrereSimulationsfenster unterteilt, die nacheinander abgearbeitetwerden. Die Methode erlaubt eine Bestimmung derFreien-Energie-Landschaft an einer beliebigen Stelle desPhasendiagramms. Der Fehler ist kontrollierbar undunabhängig von der Art der Unterteilung.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Adsorption of pure nitrogen, argon, acetone, chloroform and acetone-chloroform mixture on graphitized thermal carbon black is considered at sub-critical conditions by means of molecular layer structure theory (MLST). In the present version of the MLST an adsorbed fluid is considered as a sequence of 2D molecular layers, whose Helmholtz free energies are obtained directly from the analysis of experimental adsorption isotherm of pure components. The interaction of the nearest layers is accounted for in the framework of mean field approximation. This approach allows quantitative correlating of experimental nitrogen and argon adsorption isotherm both in the monolayer region and in the range of multi-layer coverage up to 10 molecular layers. In the case of acetone and chloroform the approach also leads to excellent quantitative correlation of adsorption isotherms, while molecular approaches such as the non-local density functional theory (NLDFT) fail to describe those isotherms. We extend our new method to calculate the Helmholtz free energy of an adsorbed mixture using a simple mixing rule, and this allows us to predict mixture adsorption isotherms from pure component adsorption isotherms. The approach, which accounts for the difference in composition in different molecular layers, is tested against the experimental data of acetone-chloroform mixture (non-ideal mixture) adsorption on graphitized thermal carbon black at 50 degrees C. (C) 2005 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A recent method for phase equilibria, the AGAPE method, has been used to predict activity coefficients and excess Gibbs energy for binary mixtures with good accuracy. The theory, based on a generalised London potential (GLP), accounts for intermolecular attractive forces. Unlike existing prediction methods, for example UNIFAC, the AGAPE method uses only information derived from accessible experimental data and molecular information for pure components. Presently, the AGAPE method has some limitations, namely that the mixtures must consist of small, non-polar compounds with no hydrogen bonding, at low moderate pressures and at conditions below the critical conditions of the components. Distinction between vapour-liquid equilibria and gas-liquid solubility is rather arbitrary and it seems reasonable to extend these ideas to solubility. The AGAPE model uses a molecular lattice-based mixing rule. By judicious use of computer programs a methodology was created to examine a body of experimental gas-liquid solubility data for gases such as carbon dioxide, propane, n-butane or sulphur hexafluoride which all have critical temperatures a little above 298 K dissolved in benzene, cyclo-hexane and methanol. Within this methodology the value of the GLP as an ab initio combining rule for such solutes in very dilute solutions in a variety of liquids has been tested. Using the GLP as a mixing rule involves the computation of rotationally averaged interactions between the constituent atoms, and new calculations have had to be made to discover the magnitude of the unlike pair interactions. These numbers have been seen as significant in their own right in the context of the behaviour of infinitely-dilute solutions. A method for extending this treatment to "permanent" gases has also been developed. The findings from the GLP method and from the more general AGAPE approach have been examined in the context of other models for gas-liquid solubility, both "classical" and contemporary, in particular those derived from equations-of-state methods and from reference solvent methods.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The interpretation of phase equilibrium and mass transport phenomena in gas/solvent - polymer system at molten or glassy state is relevant in many industrial applications. Among tools available for the prediction of thermodynamics properties in these systems, at molten/rubbery state, is the group contribution lattice-fluid equation of state (GCLF-EoS), developed by Lee and Danner and ultimately based on Panayiotou and Vera LF theory. On the other side, a thermodynamic approach namely non-equilibrium lattice-fluid (NELF) was proposed by Doghieri and Sarti to consistently extend the description of thermodynamic properties of solute polymer systems obtained through a suitable equilibrium model to the case of non-equilibrium conditions below the glass transition temperature. The first objective of this work is to investigate the phase behaviour in solvent/polymer at glassy state by using NELF model and to develop a predictive tool for gas or vapor solubility that could be applied in several different applications: membrane gas separation, barrier materials for food packaging, polymer-based gas sensors and drug delivery devices. Within the efforts to develop a predictive tool of this kind, a revision of the group contribution method developed by High and Danner for the application of LF model by Panayiotou and Vera is considered, with reference to possible alternatives for the mixing rule for characteristic interaction energy between segments. The work also devotes efforts to the analysis of gas permeability in polymer composite materials as formed by a polymer matrix in which domains are dispersed of a second phase and attention is focused on relation for deviation from Maxwell law as function of arrangement, shape of dispersed domains and loading.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider diffusion of a passive substance C in a phase-separating nonmiscible binary alloy under turbulent mixing. The substance is assumed to have different diffusion coefficients in the pure phases A and B, leading to a spatially and temporarily dependent diffusion ¿coefficient¿ in the diffusion equation plus convective term. In this paper we consider especially the effects of a turbulent flow field coupled to both the Cahn-Hilliard type evolution equation of the medium and the diffusion equation (both, therefore, supplemented by a convective term). It is shown that the formerly observed prolonged anomalous diffusion [H. Lehr, F. Sagués, and J.M. Sancho, Phys. Rev. E 54, 5028 (1996)] is no longer seen if a flow of sufficient intensity is supplied.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider diffusion of a passive substance C in a phase-separating nonmiscible binary alloy under turbulent mixing. The substance is assumed to have different diffusion coefficients in the pure phases A and B, leading to a spatially and temporarily dependent diffusion ¿coefficient¿ in the diffusion equation plus convective term. In this paper we consider especially the effects of a turbulent flow field coupled to both the Cahn-Hilliard type evolution equation of the medium and the diffusion equation (both, therefore, supplemented by a convective term). It is shown that the formerly observed prolonged anomalous diffusion [H. Lehr, F. Sagués, and J.M. Sancho, Phys. Rev. E 54, 5028 (1996)] is no longer seen if a flow of sufficient intensity is supplied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The General Ocean Turbulence Model (GOTM) is applied to the diagnostic turbulence field of the mixing layer (ML) over the equatorial region of the Atlantic Ocean. Two situations were investigated: rainy and dry seasons, defined, respectively, by the presence of the intertropical convergence zone and by its northward displacement. Simulations were carried out using data from a PIRATA buoy located on the equator at 23º W to compute surface turbulent fluxes and from the NASA/GEWEX Surface Radiation Budget Project to close the surface radiation balance. A data assimilation scheme was used as a surrogate for the physical effects not present in the one-dimensional model. In the rainy season, results show that the ML is shallower due to the weaker surface stress and stronger stable stratification; the maximum ML depth reached during this season is around 15 m, with an averaged diurnal variation of 7 m depth. In the dry season, the stronger surface stress and the enhanced surface heat balance components enable higher mechanical production of turbulent kinetic energy and, at night, the buoyancy acts also enhancing turbulence in the first meters of depth, characterizing a deeper ML, reaching around 60 m and presenting an average diurnal variation of 30 m.