935 resultados para Minimum norm
Resumo:
We study the regularization problem for linear, constant coefficient descriptor systems Ex' = Ax+Bu, y1 = Cx, y2 = Γx' by proportional and derivative mixed output feedback. Necessary and sufficient conditions are given, which guarantee that there exist output feedbacks such that the closed-loop system is regular, has index at most one and E+BGΓ has a desired rank, i.e., there is a desired number of differential and algebraic equations. To resolve the freedom in the choice of the feedback matrices we then discuss how to obtain the desired regularizing feedback of minimum norm and show that this approach leads to useful results in the sense of robustness only if the rank of E is decreased. Numerical procedures are derived to construct the desired feedback gains. These numerical procedures are based on orthogonal matrix transformations which can be implemented in a numerically stable way.
Resumo:
A detailed mathematical analysis on the q = 1/2 non-extensive maximum entropydistribution of Tsallis' is undertaken. The analysis is based upon the splitting of such adistribution into two orthogonal components. One of the components corresponds to theminimum norm solution of the problem posed by the fulfillment of the a priori conditionson the given expectation values. The remaining component takes care of the normalizationconstraint and is the projection of a constant onto the Null space of the "expectation-values-transformation"
Resumo:
A maximum entropy statistical treatment of an inverse problem concerning frame theory is presented. The problem arises from the fact that a frame is an overcomplete set of vectors that defines a mapping with no unique inverse. Although any vector in the concomitant space can be expressed as a linear combination of frame elements, the coefficients of the expansion are not unique. Frame theory guarantees the existence of a set of coefficients which is “optimal” in a minimum norm sense. We show here that these coefficients are also “optimal” from a maximum entropy viewpoint.
Resumo:
A variational inequality problem (VIP) satisfying a constraint qualification can be reduced to a mixed complementarity problem (MCP). Monotonicity of the VIP implies that the MCP is also monotone. Introducing regularizing perturbations, a sequence of strictly monotone mixed complementarity problems is generated. It is shown that, if the original problem is solvable, the sequence of computable inexact solutions of the strictly monotone MCP's is bounded and every accumulation point is a solution. Under an additional condition on the precision used for solving each subproblem, the sequence converges to the minimum norm solution of the MCP. Copyright © 2000 by Marcel Dekker, Inc.
Resumo:
One of the current issues of debate in the study of mild cognitive impairment (MCI) is deviations of oscillatory brain responses from normal brain states and its dynamics. This work aims to characterize the differences of power in brain oscillations during the execution of a recognition memory task in MCI subjects in comparison with elderly controls. Magnetoencephalographic (MEG) signals were recorded during a continuous recognition memory task performance. Oscillatory brain activity during the recognition phase of the task was analyzed by wavelet transform in the source space by means of minimum norm algorithm. Both groups obtained a 77% hit ratio. In comparison with healthy controls, MCI subjects showed increased theta (p < 0.001), lower beta reduction (p < 0.001) and decreased alpha and gamma power (p < 0.002 and p < 0.001 respectively) in frontal, temporal and parietal areas during early and late latencies. Our results point towards a dual pattern of activity (increase and decrease) which is indicative of MCI and specific to certain time windows, frequency bands and brain regions. These results could represent two neurophysiological sides of MCI. Characterizing these opposing processes may contribute to the understanding of the disorder.
Resumo:
Methods of solving the neuro-electromagnetic inverse problem are examined and developed, with specific reference to the human visual cortex. The anatomy, physiology and function of the human visual system are first reviewed. Mechanisms by which the visual cortex gives rise to external electric and magnetic fields are then discussed, and the forward problem is described mathematically for the case of an isotropic, piecewise homogeneous volume conductor, and then for an anisotropic, concentric, spherical volume conductor. Methods of solving the inverse problem are reviewed, before a new technique is presented. This technique combines prior anatomical information gained from stereotaxic studies, with a probabilistic distributed-source algorithm to yield accurate, realistic inverse solutions. The solution accuracy is enhanced by using both visual evoked electric and magnetic responses simultaneously. The numerical algorithm is then modified to perform equivalent current dipole fitting and minimum norm estimation, and these three techniques are implemented on a transputer array for fast computation. Due to the linear nature of the techniques, they can be executed on up to 22 transputers with close to linear speedup. The latter part of the thesis describes the application of the inverse methods to the analysis of visual evoked electric and magnetic responses. The CIIm peak of the pattern onset evoked magnetic response is deduced to be a product of current flowing away from the surface areas 17, 18 and 19, while the pattern reversal P100m response originates in the same areas, but from oppositely directed current. Cortical retinotopy is examined using sectorial stimuli, the CI and CIm ;peaks of the pattern onset electric and magnetic responses are found to originate from areas V1 and V2 simultaneously, and they therefore do not conform to a simple cruciform model of primary visual cortex.
Resumo:
Dense deployments of wireless local area networks (WLANs) are becoming a norm in many cities around the world. However, increased interference and traffic demands can severely limit the aggregate throughput achievable unless an effective channel assignment scheme is used. In this work, a simple and effective distributed channel assignment (DCA) scheme is proposed. It is shown that in order to maximise throughput, each access point (AP) simply chooses the channel with the minimum number of active neighbour nodes (i.e. nodes associated with neighbouring APs that have packets to send). However, application of such a scheme to practice depends critically on its ability to estimate the number of neighbour nodes in each channel, for which no practical estimator has been proposed before. In view of this, an extended Kalman filter (EKF) estimator and an estimate of the number of nodes by AP are proposed. These not only provide fast and accurate estimates but can also exploit channel switching information of neighbouring APs. Extensive packet level simulation results show that the proposed minimum neighbour and EKF estimator (MINEK) scheme is highly scalable and can provide significant throughput improvement over other channel assignment schemes.
Resumo:
Spectral unmixing (SU) is a technique to characterize mixed pixels of the hyperspectral images measured by remote sensors. Most of the existing spectral unmixing algorithms are developed using the linear mixing models. Since the number of endmembers/materials present at each mixed pixel is normally scanty compared with the number of total endmembers (the dimension of spectral library), the problem becomes sparse. This thesis introduces sparse hyperspectral unmixing methods for the linear mixing model through two different scenarios. In the first scenario, the library of spectral signatures is assumed to be known and the main problem is to find the minimum number of endmembers under a reasonable small approximation error. Mathematically, the corresponding problem is called the $\ell_0$-norm problem which is NP-hard problem. Our main study for the first part of thesis is to find more accurate and reliable approximations of $\ell_0$-norm term and propose sparse unmixing methods via such approximations. The resulting methods are shown considerable improvements to reconstruct the fractional abundances of endmembers in comparison with state-of-the-art methods such as having lower reconstruction errors. In the second part of the thesis, the first scenario (i.e., dictionary-aided semiblind unmixing scheme) will be generalized as the blind unmixing scenario that the library of spectral signatures is also estimated. We apply the nonnegative matrix factorization (NMF) method for proposing new unmixing methods due to its noticeable supports such as considering the nonnegativity constraints of two decomposed matrices. Furthermore, we introduce new cost functions through some statistical and physical features of spectral signatures of materials (SSoM) and hyperspectral pixels such as the collaborative property of hyperspectral pixels and the mathematical representation of the concentrated energy of SSoM for the first few subbands. Finally, we introduce sparse unmixing methods for the blind scenario and evaluate the efficiency of the proposed methods via simulations over synthetic and real hyperspectral data sets. The results illustrate considerable enhancements to estimate the spectral library of materials and their fractional abundances such as smaller values of spectral angle distance (SAD) and abundance angle distance (AAD) as well.
Resumo:
BACKGROUND: Original sevoflurane (Sevo A) is made with water, while a generic sevoflurane (Sevocris) is produced with propylene glycol as a stabilizing additive. We investigated whether the original and generic sevoflurane preparations differed in terms of their minimum alveolar concentration (MAC) values and hemodynamic effects. METHODS: Sixteen pigs weighing 31.6±1.8 kg were randomly assigned to the Sevo A or Sevocris groups. After anesthesia induction via mask with the appropriate sevoflurane preparation (6% in 100% oxygen), the MAC was determined for each animal. Hemodynamic and oxygenation parameters were measured at 0.5 MAC, 1 MAC and 1.5 MAC. Histopathological analyses of lung parenchyma were performed. RESULTS: The MAC in the Sevo A group was 4.4±0.5%, and the MAC in the Sevocris group was 4.1±0.7%. Hemodynamic and metabolic parameters presented significant differences in a dose-dependent pattern as expected, but they did not differ between groups. Cardiac indices and arterial pressures decreased in both groups when the sevoflurane concentration increased from 0.5 to 1 and 1.5 MAC. The oxygen delivery index (DO2I) decreased significantly at 1.5 MAC. CONCLUSION: Propylene glycol as an additive for sevoflurane seems to be as safe as a water additive, at least in terms of hemodynamic and pulmonary effects.
Resumo:
An analysis of the experimental conditions under which low-frequency (70-150 kHz) Alfven eigertmodes (AE) are excited during the monster sawtooth in Joint European Torus [F Romanelli et al, Proceedings of the 22nd IAEA Fusion Energy Conference, Geneva, Switzerland, 2008] is presented for the specific case of a discharge with ion cyclotron heating (5 MW) Using a simplified AE model for modes excited at the Alfven wave continuum maximum with geodesic corrections taken into account, the temporal evolution of the value of the safety factor q(0) at the magnetic axis is determined We describe a new scheme to determine the time variation of q(0) that works under conditions in which other standard diagnostics, such as the motional Stark effect do not give reliable results such as during a monster sawtooth [doi 10 1063/1 3494212]
Resumo:
In this paper we obtain the linear minimum mean square estimator (LMMSE) for discrete-time linear systems subject to state and measurement multiplicative noises and Markov jumps on the parameters. It is assumed that the Markov chain is not available. By using geometric arguments we obtain a Kalman type filter conveniently implementable in a recurrence form. The stationary case is also studied and a proof for the convergence of the error covariance matrix of the LMMSE to a stationary value under the assumption of mean square stability of the system and ergodicity of the associated Markov chain is obtained. It is shown that there exists a unique positive semi-definite solution for the stationary Riccati-like filter equation and, moreover, this solution is the limit of the error covariance matrix of the LMMSE. The advantage of this scheme is that it is very easy to implement and all calculations can be performed offline. (c) 2011 Elsevier Ltd. All rights reserved.
Resumo:
This paper proposes some variants of Temporal Defeasible Logic (TDL) to reason about normative modifications. These variants make it possible to differentiate cases in which, for example, modifications at some time change legal rules but their conclusions persist afterwards from cases where also their conclusions are blocked.