137 resultados para Midpoint
Resumo:
Using the extended Thomas-Fermi version of density-functional theory (DFT), calculations are presented for the barrier for the reaction Na20++Na20+¿Na402+. The deviation from the simple Coulomb barrier is shown to be proportional to the electron density at the bond midpoint of the supermolecule (Na20+)2. An extension of conventional quantum-chemical studies of homonuclear diatomic molecular ions is then effected to apply to the supermolecular ions of the alkali metals. This then allows the Na results to be utilized to make semiquantitative predictions of position and height of the maximum of the fusion barrier for other alkali clusters. These predictions are confirmed by means of similar DFT calculations for the K clusters.
Resumo:
This study investigates the human response to impulse perturbations at the midpoint of a haptically-guided straight-line point-to-point movement. Such perturbation response may be used as an assessment tool during robot-mediated neuro-rehabilitation therapy. Subjects show variety in their perturbation responses. Movements with a lower perturbation displacement exhibit high frequency oscillations, indicative of increased joint stiffness. Equally, movements with a high perturbation displacement exhibit lower frequency oscillations with higher amplitude and a longer settling time. Some subjects show unexpected transients during the perturbation impulse, which may be caused by complex joint interactions in the hand and arm.
Resumo:
A process has been elaborated for one-step low lignin content sugarcane bagasse hemicellulose extraction using alkaline solution of hydrogen peroxide. To maximize the hemicellulose yields several extraction conditions were examined applying the 2(4) factorial design: H(2)O(2) concentration from 2 to 6% (w/v), reaction time from 4 to 16 h, temperature from 20 to 60 degrees C, and magnesium sulfate absence or presence (0.5%, w/v). This approach allowed selection of conditions for the extraction of low and high lignin content hemicellulose. At midpoint the yield of hemicellulose was 94.5% with more than 88% of lignin removed. Lignin removal is suppressed at low extraction temperatures and in the absence of magnesium sulfate. Hemicellulose in 86% yield with low lignin content (5.9%) was obtained with 6% H(2)O(2) treatment for 4 h and 20 degrees C. This hemicellulose is much lighter in color than samples obtained at the midpoint condition and was found suitable for subsequent enzymatic hydrolysis. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
This work proposes a completely new approach for the design of resonant structures aiming at wavelength-filtering applications. The structure consists of a subwavelength metal-insulator-metal (MIM) waveguide presenting tilted coupled structures transversely arranged in the midpoint between the input and output ports. The cavity-like response of this device has shown that this concept can be particularly attractive for optical filter design for telecom applications. The extra degree of freedom provided by the tilting of the cavity has proved to be not only very effective on improving the quality factor of these structures, but also to be an elegant way of extending the range of applications for tuning multiple wavelengths, if necessary.
Resumo:
We examined resource limitations on growth and carbon allocation in a fast-growing, clonal plantation of Eucalyptus grandis x urophylla in Brazil by characterizing responses to annual rainfall, and response to irrigation and fertililization for 2 years. Productivity measures included gross primary production (GPP), total belowground carbon allocation (TBCA), bole growth, and net ecosystem production (NEP). Replicate plots within a single plantation were established at the midpoint of the rotation (end of year 3), with treatments of no additional fertilization or irrigation, heavy fertilization (to remove any nutrient limitation), irrigation (to remove any water limitation), and irrigation plus fertilization. Rainfall was unusually high in the first year (1769mm) of the experiment, and control plots had high rates of GPP (6.64 kg C m(-2) year(-1)), TBCA (2.14 kg C m(-2) year(-1)), and bole growth (1.81 kg C m(-2) year). Irrigation increased each of these rates by 15-17%. The second year of the experiment had average rainfall (1210 mm), and lower rainfall decreased production in control plots by 46% (GPP), 52% (TBCA), and 40% (bole growth). Fertilization treatments had neglible effects. The response to irrigation was much greater in the drier year, with irrigated plots exceeding the production in control plots by 83% (GPP), 239% (TBCA), and 24% (bole growth). Even though the rate of irrigation ensured no water limitation to tree growth, the high rainfall year showed higher production in irrigated plots for both GPP (38% greater than in drier year) and bole growth (23% greater). Varying humidity and supplies of water led to a range in NEP of 0.8-2.7 kg C m(-2) year. This difference between control and irrigated treatments, combined with differences between drier and wetter years, indicated a strong response of these Eucalyptus trees to both water supply and atmospheric humidity during the dry season. The efficiency of converting light energy into fixed carbon ranged from a low of 0.027 mol C to a high of 0.060 mol C per mol of absorbed photosynthetically active radiation (APAR), and the efficiency of bolewood production ranged from 0.78 to 1.98 g wood per MJ of APAR. Irrigation increased the efficiency of wood production per unit of water used from 2.55 kg wood m(-3) in the rainfed plot to 3.51 kg m(-3) in irrigated plots. Detailed information on the response of C budgets to environmental conditions and resource supplies will be necessary for accurate predictions of plantation yields across years and landscapes. (V) 2007 Elsevier B.V. All rights reserved.
Resumo:
Direct oxidation of sulfite to sulfate occurs in various photo- and chemotrophic sulfur oxidizing microorganisms as the final step in the oxidation of reduced sulfur compounds and is catalyzed by sulfite:cytochrome c oxidoreductase (EC 1.8.2.1), Here we show that the enzyme from Thiobacillus novellus is a periplasmically located alpha beta heterodimer, consisting of a 40.6-kDa subunit containing a molybdenum cofactor and an 8.8-kDa monoheme cytochrome c(552) smbunit (midpoint redox potential, Em(8.0) = +280 mV), The organic component of the molybdenum cofactor was identified as molybdopterin contained in a 1:1 ratio to the Mo content of the enzyme. Electron paramagnetic resonance spectroscopy revealed the presence of a sulfite-inducible Mo(V) signal characteristic of sulfite:acceptor oxidoreductases. However, pH-dependent changes in the electron paramagnetic resonance signal were not detected. Kinetic studies showed that the enzyme exhibits a ping-pong mechanism involving two reactive sites. K-m values for sulfite and cytochrome c(550) were determined to be 27 and 4 mu M, respectively; the enzyme was found to be reversibly inhibited by sulfate and various buffer ions. The sorAB genes, which encode the enzyme, appear to form an operon, which is preceded by a putative extracytoplasmic function-type promoter and contains a hairpin loop termination structure downstream of sorB. While SorA exhibits significant similarities to known sequences of eukaryotic and bacterial sulfite:acceptor oxidoreductases, SorB does not appear to be closely related to any known c-type cytochromes.
Resumo:
We outline a scheme to accomplish measurements of a solid state double well system (DWS) with both one and two electrons in nonlocalized bases. We show that, for a single particle, measuring the local charge distribution at the midpoint of a DWS using a SET as a sensitive electrometer amounts to performing a projective measurement in the parity (symmetric/antisymmetric) eigenbasis. For two-electrons in a DWS, a similar configuration of SET results in close-to-projective measurement in the singlet/triplet basis. We analyze the sensitivity of the scheme to asymmetry in the SET position for some experimentally relevant parameter, and show that it is experimentally realizable.
Resumo:
The authors present the first clinical implementation of an endoscopic-assisted percutaneous anterolateral radiofrequency cordotomy. The aim of this article is to demonstrate the intradural endoscopic visualization of the cervical spinal cord via a percutaneous approach to refine the spinal target for anterolateral cordotomy, avoiding undesired trauma to the spinal tissue or injury to blood vessels. Initially, a lateral puncture of the spinal canal in the C1-2 interspace is performed, guided by fluoroscopy. As soon as CSF is reached by the guide cannula (17-gauge needle), the endoscope can be inserted for visualization of the spinal cord and its surrounding structures. The endoscopic visualization provided clear identification of the pial surface of the spinal cord, arachnoid membrane, dentate ligament, dorsal and ventral root entry zone, and blood vessels. The target for electrode insertion into the spinal cord was determined to be the midpoint from the dentate ligament and the ventral root entry zone. The endoscopic guidance shortened the fluoroscopy usage time and no intrathecal contrast administration was needed. Cordotomy was performed by a standard radiofrequency method after refining of the neurophysiological target. Satisfactory analgesia was provided by the procedure with no additional complications or CSF leak. The initial use of this technique suggests that a percutaneous endoscopic procedure may be useful for particular manipulation of the spinal cord, possibly adding a degree of safety to the procedure and improving its effectiveness. (DOI: 10.3171/2010.4.JNS091779)
Resumo:
Directed evolution techniques have been used to improve the thermal stability of the xylanase A from Bacillus subtilis (XylA). Two generations of random mutant libraries generated by error prone PCR coupled with a single generation of DNA shuffling produced a series of mutant proteins with increasing thermostability. The most Thermostable XylA variant from the third generation contained four mutations Q7H, G13R, S22P, and S179C that showed an increase in melting temperature of 20 degrees C. The thermodynamic properties Of a representative subset of nine XylA variants showing a range of thermostabilities were measured by thermal denaturation as monitored by the change in the far ultraviolet circular dichroism signal. Analysis of the data from these thermostable variants demonstrated a correlation between the decrease in the heat capacity change (Delta C(p)) with an increase in the midpoint of the transition temperature (T(m)) on transition from the native to the unfolded state. This result could not be interpreted within the context of the changes in accessible surface area of the protein on transition from the native to unfolded states. Since all the mutations are located at the surface of the protein, these results suggest that an explanation of the decrease in Delta C(p) on should include effects arising from the prot inlsolvent interface.
Resumo:
Objective. This study evaluated the reliability of tooth-crown radiographic references to aid in orthodontic mini-implant insertion and showed an insertion technique based on these references. Study design. The sample consisted of 213 interradicular septa evaluated in 53 bitewing radiographs. The proximal contour of adjacent tooth crowns was used to define septum width and its midpoint was linked to the interdental contact point to determine septum midline (SML). The distances from SML to mesial and distal teeth were measured and compared to evaluate SML centralization degree in 2 different septum heights. Results. The mesial and distal distances were not statistically different in the midpoint of the septum height, but they were different at the apical septum height. Conclusions. The tooth-crown radiographic references determine a high centralization degree of the SML on which an insertion site could be defined. The greater SML centralization degree was observed at the coronal septum area. (Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2010;110:e8-e16)
Resumo:
A system for expressing site-directed mutants of the molybdenum enzyme dimethyl sulfoxide reductase from Rhodobacter capsulatus in the natural host was constructed. This system was used to Generate and express dimethyl sulfoxide reductase with a Y114F mutation. The Y114F mutant had an increased k(cat) and increased K-m toward both dimethyl sulfoxide and trimethylamine N-oxide compared to the native enzyme, and the value of k(cat)/K-m was lower for both substrates in the mutant enzyme. The Y114F mutant, as isolated, was able to oxidize dimethyl sulfide with phenazine ethosulfate as the electron acceptor but with a lower k(cat) than that of the native enzyme. The pH optimum of dimethyl sulfide: acceptor oxidoreductase activity in the Y114F mutant was shown to be shifted by +1 pH unit compared to the native enzyme. The Y114F mutant did not form a pink complex with dimethyl sulfide, which is characteristic of the native enzyme. The mutant enzyme showed a large increase in the K-d for DMS. Direct electrochemistry showed that the Mo(V)/Mo(IV) couple was unaffected by the Y114F mutant, but the midpoint potential of the Mo(VI)/Mo(V) couple was raised by about 50 mV. These data confirm that the Y114 residue plays a critical role in oxidation-reduction processes at the molybdenum active site and in oxygen atom transfer associated with sulfoxide reduction.
Resumo:
Dimethyl sulfide dehydrogenase from the purple phototrophic bacterium Rhodovulum sulfidophilum catalyzes the oxidation of dimethyl sulfide to dimethyl sulfoxide. Recent DNA sequence analysis of the ddh operon, encoding dimethyl sulfide dehydrogenase (ddhABC), and biochemical analysis (1) have revealed that it is a member of the DMSO reductase family of molybdenum enzymes and is closely related to respiratory nitrate reductase (NarGHI). Variable temperature X-band EPR spectra (120122 K) of purified heterotrimeric dimethyl sulfide dehydrogenase showed resonances arising from multiple redox centers, Mo(V), [3Fe-4S](+), [4Fe-4S](+), and a b-type heme. A pH-dependent EPR study of the Mo(V) center in (H2O)-H-1 and (H2O)-H-2 revealed the presence of three Mo(V) species in equilibrium, Mo(V)-OH2, Mo(v)-anion, and Mo(V)-OH. Above pH 8.2 the dominant species was Mo(V)-OH. The maximum specific activity occurred at pH 9.27. Comparison of the rhombicity and anisotropy parameters for the Mo(V) species in DMS dehydrogenase with other molybdenum enzymes of the DMSO reductase family showed that it was most similar to the low-pH nitrite spectrum of Escherichia coli nitrate reductase (NarGHI), consistent with previous sequence analysis of DdhA and NarG. A sequence comparison of DdhB and NarH has predicted the presence of four [Fe-S] clusters in DdhB. A [3Fe-4S](+) cluster was identified in dimethyl sulfide dehydrogenase whose properties resembled those of center 2 of NarH. A [4Fe-4S](+) cluster was also identified with unusual spin Hamiltonian parameters, suggesting that one of the iron atoms may have a fifth non-sulfur ligand. The g matrix for this cluster is very similar to that found for the minor conformation of center 1 in NarH [Guigliarelli, B., Asso, M., More, C., Augher, V., Blasco, F., Pommier, J., Giodano, G., and Bertrand, P. (1992) Eur. J. Biochem. 307,63-68]. Analysis of a ddhC mutant showed that this gene encodes the b-type cytochrome in dimethyl sulfide dehydrogenase. Magnetic circular dichroism studies revealed that the axial ligands to the iron in this cytochrome are a histidine and methionine, consistent with predictions from protein sequence analysis. Redox potentiometry showed that the b-type cytochrome has a high midpoint redox potential (E-o = +315 mV, pH 8).
Resumo:
Eur. J. Biochem. 270, 3904–3915 (2003)