81 resultados para Microchip
Resumo:
This article describes an effective microchip protocol based on electrophoretic-separation and electrochemical detection for highly sensitive and rapid measurements of nitrate ester explosives, including ethylene glycol dinitrate (EGDN), pentaerythritol tetranitrate (PETN), propylene glycol dinitrate (PGDN) and glyceryl trinitrate (nitroglycerin, NG). Factors influencing the separation and detection processes were examined and optimized. Under the optimal separation conditions obtained using a 15 mM borate buffer (pH 9.2) containing 20 mM SDS, and applying a separation voltage of 1500 V, the four nitrate ester explosives were separated within less than 3 min. The glassy-carbon amperometric detector (operated at -0.9 V vs. Ag/AgCl) offers convenient cathodic detection down to the picogram level, with detection limits of 0.5 ppm and 0.3 ppm for PGDN and for NG, respectively, along with good repeatability (RSD of 1.8-2.3%; n = 6) and linearity (over the 10-60 ppm range). Such effective microchip operation offers great promise for field screening of nitrate ester explosives and for supporting various counter-terrorism surveillance activities.
Resumo:
A dual-channel electrospray microchip has been developed for electrospray ionization mass spectrometry (ESI-MS) where aqueous samples are mixed at the Taylor cone with an organic buffer. Due to the fast and effective mixing in the Taylor cone, the aqueous sample can be well ionized with a high ion intensity. The influence of geometric parameters such as the distance between the two microchannels at their junction at the tip of the emitter has been investigated together with chemical parameters such as the organic buffer composition.
Resumo:
In this report, we describe a rapid and reliable process to bond channels fabricated in glass substrates. Glass channels were fabricated by photolithography and wet chemical etching. The resulting channels were bonded against another glass plate containing a 50-mu m thick PDMS layer. This same PDMS layer was also used to provide the electrical insulation of planar electrodes to carry out capacitively coupled contactless conductivity detection. The analytical performance of the proposed device was shown by using both LIF and capacitively coupled contactless conductivity detection systems. Efficiency around 47 000 plates/m was achieved with good chip-to-chip repeatability and satisfactory long-term stability of EOF. The RSD for the EOF measured in three different devices was ca. 7%. For a chip-to-chip comparison, the RSD values for migration time, electrophoretic current and peak area were below 10%. With the proposed approach, a single chip can be fabricated in less than 30 min including patterning, etching and sealing steps. This fabrication process is faster and easier than the thermal bonding process. Besides, the proposed method does not require high temperatures and provides excellent day-to-day and device-to-device repeatability.
Resumo:
A variety of substrates have been used for fabrication of microchips for DNA extraction, PCR amplification, and DNA fragment separation, including the more conventional glass and silicon as well as alternative polymer-based materials. Polyester represents one such polymer, and the laser-printing of toner onto polyester films has been shown to be effective for generating polyester-toner (PeT) microfluidic devices with channel depths on the order of tens of micrometers. Here, we describe a novel and simple process that allows for the production of multilayer, high aspect-ratio PeT microdevices with substantially larger channel depths. This innovative process utilizes a CO(2) laser to create the microchannel in polyester sheets containing a uniform layer of printed toner, and multilayer devices can easily be constructed by sandwiching the channel layer between uncoated cover sheets of polyester containing precut access holes. The process allows the fabrication of deep channels, with similar to 270 mu m, and we demonstrate the effectiveness of multilayer PeT microchips for dynamic solid phase extraction (dSPE) and PCR amplification. With the former, we found that (i) more than 65% of DNA from 0.6 mu L of blood was recovered, (ii) the resultant DNA was concentrated to greater than 3 ng/mu L., (which was better than other chip-based extraction methods), and (iii) the DNA recovered was compatible with downstream microchip-based PCR amplification. Illustrative of the compatibility of PeT microchips with the PCR process, the successful amplification of a 520 bp fragment of lambda-phage DNA in a conventional thermocycler is shown. The ability to handle the diverse chemistries associated with DNA purification and extraction is a testimony to the potential utility of PeT microchips beyond separations and presents a promising new disposable platform for genetic analysis that is low cost and easy to fabricate.
Resumo:
[EN]The present work evaluates, on one hand, two anaesthetic agents to facilitate octopus handling concluding that a 1.5% of ethanol (96%) in sea water (22ºC) shows rapid anaesthetic-recovery time, indicating its suitability for this species. On the other hand, a protocol for implanting Octopus vulgaris with subcutaneous PIT tags is established and after 10 weeks a 94% retention was found with 100% survival. Retention rises to 98,6% when tagging animals weighing more than 500 g.
Resumo:
Uno dei principali passi della catena di produzione di circuiti integrati è quello di testare e valutare una serie di chip campione per verificare che essi rientrino nei valori e nelle specifiche scelte. Si tratta di un passaggio molto importante che determina le caratteristiche del prodotto nella realtà, mostrando le proprie capacità o i propri limiti, permettendo così di valutare un’eventuale produzione su larga scala. Ci permette inoltre di stimare quali dei chip rispetto agli altri presi in esame è migliore in alcuni aspetti, oppure quale risulta più lontano dalle specifiche volute. Il lavoro alle spalle di questa tesi è proprio questo: si è cercato di caratterizzare un microchip chiamato Carbonio, nato nei laboratori della II Facoltà di Ingegneria di Cesena, creando un banco di misura automatico, tramite l’ausilio del software Labview e di una scheda hardware realizzata ad hoc, che desse la possibilità di eseguire alcuni test consecutivi su ogni singolo circuito integrato in modo da caratterizzarlo estrapolando tutte le informazioni cercate e verificandone il funzionamento. Tutti i valori estratti sono stati poi sottoposti a una breve analisi statistica per stabilire per esempio quale circuito integrato fosse meno immune ai disturbi dovuti al rumore elettrico oppure per eseguire un’indagine al fine di vedere come i valori dei parametri scelti si disponessero rispetto ai lori rispettivi valori medi.
Resumo:
Microfluidic technology has been successfully applied to isolate very rare tumor-derived epithelial cells (circulating tumor cells, CTCs) from blood with relatively high yield and purity, opening up exciting prospects for early detection of cancer. However, a major limitation of state-of-the-art CTC-chips is their inability to characterize the behavior and function of captured CTCs, for example to obtain information on proliferative and invasive properties or, ultimately, tumor re-initiating potential. Although CTCs can be efficiently immunostained with markers reporting phenotype or fate (e.g. apoptosis, proliferation), it has not yet been possible to reliably grow captured CTCs over long periods of time and at single cell level. It is challenging to remove CTCs from a microchip after capture, therefore such analyses should ideally be performed directly on-chip. To address this challenge, we merged CTC capture with three-dimensional (3D) tumor cell culture on the same microfluidic platform. PC3 prostate cancer cells were isolated from spiked blood on a transparent PDMS CTC-chip, encapsulated on-chip in a biomimetic hydrogel matrix (QGel™) that was formed in situ, and their clonal 3D spheroid growth potential was assessed by microscopy over one week in culture. The possibility to clonally expand a subset of captured CTCs in a near-physiological in vitro model adds an important element to the expanding CTC-chip toolbox that ultimately should improve prediction of treatment responses and disease progression.
Resumo:
Our dynamic capillary electrophoresis model which uses material specific input data for estimation of electroosmosis was applied to investigate fundamental aspects of isoelectric focusing (IEF) in capillaries or microchannels made from bare fused-silica (FS), FS coated with a sulfonated polymer, polymethylmethacrylate (PMMA) and poly(dimethylsiloxane) (PDMS). Input data were generated via determination of the electroosmotic flow (EOF) using buffers with varying pH and ionic strength. Two models are distinguished, one that neglects changes of ionic strength and one that includes the dependence between electroosmotic mobility and ionic strength. For each configuration, the models provide insight into the magnitude and dynamics of electroosmosis. The contribution of each electrophoretic zone to the net EOF is thereby visualized and the amount of EOF required for the detection of the zone structures at a particular location along the capillary, including at its end for MS detection, is predicted. For bare FS, PDMS and PMMA, simulations reveal that EOF is decreasing with time and that the entire IEF process is characterized by the asymptotic formation of a stationary steady-state zone configuration in which electrophoretic transport and electroosmotic zone displacement are opposite and of equal magnitude. The location of immobilization of the boundary between anolyte and most acidic carrier ampholyte is dependent on EOF, i.e. capillary material and anolyte. Overall time intervals for reaching this state in microchannels produced by PDMS and PMMA are predicted to be similar and about twice as long compared to uncoated FS. Additional mobilization for the detection of the entire pH gradient at the capillary end is required. Using concomitant electrophoretic mobilization with an acid as coanion in the catholyte is shown to provide sufficient additional cathodic transport for that purpose. FS capillaries dynamically double coated with polybrene and poly(vinylsulfonate) are predicted to provide sufficient electroosmotic pumping for detection of the entire IEF gradient at the cathodic column end.
Resumo:
Laser ablation/ionisation mass spectrometry with a vertical resolution at a nanometre scale was applied for the quantitative characterisation of the chemical composition of additive-assisted Cu electroplated deposits used in the microchip industry. The detailed chemical analysis complements information gathered by optical techniques and allows new insights into the metal deposition process.
Resumo:
El siguiente proyecto es un desarrollo histórico-científico acerca de la notoria importancia que supuso la aparición del microchip o circuito integrado1. El desarrollo de este trabajo ha sido una investigación bibliográfica en contenidos webs, enciclopedias y libros. El trabajo contiene un estudio sobre los transistores que fue el componente que dio paso al circuito integrado además de ser uno de los mayores inventos del siglo XX, además, se propone una pequeña inmersión a la época histórica del momento de la aparición del transistor. Al igual que con el transistor, se hace un estudio acerca del circuito integrado, pero en este caso siendo más extenso ya que es el objeto de estudio de este PFC. Para este componente sí que podemos encontrar una explicación más exhaustiva acerca de su fabricación, materiales. Además también podemos encontrar el momento históricosocial de la época bajo estudio. Para finalizar con el proyecto, se hace un breve repaso de los ejemplos de aplicación del circuito integrado y así poder hacer hincapié de la revolución tecnológica que supuso el descubrimiento del microchip. ABSTRACT. The following work is a historical and scientific development regarding the fundamental importance the emergence of the microchip. The development of this work has consisted of a bibliographic research of web contents, encyclopedias and books. The paper contains a study about the transistors, component that propitiated the integrated circuit and was one of the most important inventions of the XXth century. Also is proposed a short historical immersion in the time that preceded the coming of the transistor. As well as with the transistor, a study of the integrated circuit is carried out, yet with deeper insight, for that is the central aim of this Final Project report. For this component a more exhaustive explanation of its manufacture process, materials and theories can be provided. Also, the historical and social of that time is described. To complete the report, a brief review is done about examples of applications of the integrated circuit and thus highlight the technological revolution that the microchip development brought.
Resumo:
Single-cell functional proteomics assays can connect genomic information to biological function through quantitative and multiplex protein measurements. Tools for single-cell proteomics have developed rapidly over the past 5 years and are providing unique opportunities. This thesis describes an emerging microfluidics-based toolkit for single cell functional proteomics, focusing on the development of the single cell barcode chips (SCBCs) with applications in fundamental and translational cancer research.
The microchip designed to simultaneously quantify a panel of secreted, cytoplasmic and membrane proteins from single cells will be discussed at the beginning, which is the prototype for subsequent proteomic microchips with more sophisticated design in preclinical cancer research or clinical applications. The SCBCs are a highly versatile and information rich tool for single-cell functional proteomics. They are based upon isolating individual cells, or defined number of cells, within microchambers, each of which is equipped with a large antibody microarray (the barcode), with between a few hundred to ten thousand microchambers included within a single microchip. Functional proteomics assays at single-cell resolution yield unique pieces of information that significantly shape the way of thinking on cancer research. An in-depth discussion about analysis and interpretation of the unique information such as functional protein fluctuations and protein-protein correlative interactions will follow.
The SCBC is a powerful tool to resolve the functional heterogeneity of cancer cells. It has the capacity to extract a comprehensive picture of the signal transduction network from single tumor cells and thus provides insight into the effect of targeted therapies on protein signaling networks. We will demonstrate this point through applying the SCBCs to investigate three isogenic cell lines of glioblastoma multiforme (GBM).
The cancer cell population is highly heterogeneous with high-amplitude fluctuation at the single cell level, which in turn grants the robustness of the entire population. The concept that a stable population existing in the presence of random fluctuations is reminiscent of many physical systems that are successfully understood using statistical physics. Thus, tools derived from that field can probably be applied to using fluctuations to determine the nature of signaling networks. In the second part of the thesis, we will focus on such a case to use thermodynamics-motivated principles to understand cancer cell hypoxia, where single cell proteomics assays coupled with a quantitative version of Le Chatelier's principle derived from statistical mechanics yield detailed and surprising predictions, which were found to be correct in both cell line and primary tumor model.
The third part of the thesis demonstrates the application of this technology in the preclinical cancer research to study the GBM cancer cell resistance to molecular targeted therapy. Physical approaches to anticipate therapy resistance and to identify effective therapy combinations will be discussed in detail. Our approach is based upon elucidating the signaling coordination within the phosphoprotein signaling pathways that are hyperactivated in human GBMs, and interrogating how that coordination responds to the perturbation of targeted inhibitor. Strongly coupled protein-protein interactions constitute most signaling cascades. A physical analogy of such a system is the strongly coupled atom-atom interactions in a crystal lattice. Similar to decomposing the atomic interactions into a series of independent normal vibrational modes, a simplified picture of signaling network coordination can also be achieved by diagonalizing protein-protein correlation or covariance matrices to decompose the pairwise correlative interactions into a set of distinct linear combinations of signaling proteins (i.e. independent signaling modes). By doing so, two independent signaling modes – one associated with mTOR signaling and a second associated with ERK/Src signaling have been resolved, which in turn allow us to anticipate resistance, and to design combination therapies that are effective, as well as identify those therapies and therapy combinations that will be ineffective. We validated our predictions in mouse tumor models and all predictions were borne out.
In the last part, some preliminary results about the clinical translation of single-cell proteomics chips will be presented. The successful demonstration of our work on human-derived xenografts provides the rationale to extend our current work into the clinic. It will enable us to interrogate GBM tumor samples in a way that could potentially yield a straightforward, rapid interpretation so that we can give therapeutic guidance to the attending physicians within a clinical relevant time scale. The technical challenges of the clinical translation will be presented and our solutions to address the challenges will be discussed as well. A clinical case study will then follow, where some preliminary data collected from a pediatric GBM patient bearing an EGFR amplified tumor will be presented to demonstrate the general protocol and the workflow of the proposed clinical studies.
Resumo:
This novel capillary electrophoresis microchip, or also known as μTAS (micro total analysis system) was designed to separate complex aqueous based compounds, similar to commercial CE & microchip (capillary electrophoresis) systems, but more compact. This system can be potentially used for mobile/portable chemical analysis equipment. Un-doped silicon wafer & ultra-thin borofloat glass (Pyrex) wafers have been used to fabricate the device. Double-L injection feature, micro pillars column, bypass separation channel & hybrid- referenced C4D electrodes were designed to achieve a high SNR (signal to noise ratio), easy- separation, for a durable and reusable μTAS for CE use.
Resumo:
Ki-1/57 (HABP4) and CGI-55 (SERBP1) are regulatory proteins and paralogs with 40.7% amino acid sequence identity and 67.4% similarity. Functionally, they have been implicated in the regulation of gene expression on both the transcriptional and mRNA metabolism levels. A link with tumorigenesis is suggested, since both paralogs show altered expression levels in tumor cells and the Ki-1/57 gene is found in a region of chromosome 9q that represents a haplotype for familiar colon cancer. However, the target genes regulated by Ki-1/57 and CGI-55 are unknown. Here, we analyzed the alterations of the global transcriptome profile after Ki-1/57 or CGI-55 overexpression in HEK293T cells by DNA microchip technology. We were able to identify 363 or 190 down-regulated and 50 or 27 up-regulated genes for Ki-1/57 and CGI-55, respectively, of which 20 were shared between both proteins. Expression levels of selected genes were confirmed by qRT-PCR both after protein overexpression and siRNA knockdown. The majority of the genes with altered expression were associated to proliferation, apoptosis and cell cycle control processes, prompting us to further explore these contexts experimentally. We observed that overexpression of Ki-1/57 or CGI-55 results in reduced cell proliferation, mainly due to a G1 phase arrest, whereas siRNA knockdown of CGI-55 caused an increase in proliferation. In the case of Ki-1/57 overexpression, we found protection from apoptosis after treatment with the ER-stress inducer thapsigargin. Together, our data give important new insights that may help to explain these proteins putative involvement in tumorigenic events.
Resumo:
The third-harmonic optical susceptibility, chi((3))(3 omega; omega, omega, omega) of a silicate glass ceramic containing sodium niobate nanocrystals was measured for incident broadband light with central frequency omega corresponding to 1900nm. Absolute values of |chi((3))| and the dispersion of the refractive index from 600 to 1900nm were measured using the spectrally resolved femtosecond Maker fringes technique. The experiments show that |chi((3))| is 1 order of magnitude larger than silica, and it grows by similar to 50% when the volume fraction occupied by the nanocrystals increases up to 40%. (C) 2011 Optical Society of America