967 resultados para Microarray Lipopolysaccharide
Resumo:
The mononuclear phagocyte system (MPS) was defined as a family of cells comprising bone marrow progenitors, blood monocytes, and tissue macrophages. In this review, we briefly consider markers for cells of this lineage in the mouse, especially the F4/80 surface antigen and the receptor for macrophage colony-stimulating factor. The concept of the MPS is challenged by evidence that there is a separate embryonic phagocyte lineage, the blurring of the boundaries between macrophages and other cells types arising from phenotypic plasticity and transdifferentiation, and evidence of local renewal of tissue macrophage populations as opposed to monocyte recruitment. Nevertheless, there is a unity to cells of the MPS suggested by their location, morphology, and shared markers. We discuss the origins of macrophage heterogeneity and argue that macrophages and antigen-representing dendritic cells are closely related and part of the MPS.
Resumo:
Innate immune responses play a central role in neuroprotection and neurotoxicity during inflammatory processes that are triggered by pathogen-associated molecular pattern-exhibiting agents such as bacterial lipopolysaccharide (LPS) and that are modulated by inflammatory cytokines such as interferon γ (IFNγ). Recent findings describing the unexpected complexity of mammalian genomes and transcriptomes have stimulated further identification of novel transcripts involved in specific physiological and pathological processes, such as the neural innate immune response that alters the expression of many genes. We developed a system for efficient subtractive cloning that employs both sense and antisense cRNA drivers, and coupled it with in-house cDNA microarray analysis. This system enabled effective direct cloning of differentially expressed transcripts, from a small amount (0.5 µg) of total RNA. We applied this system to isolation of genes activated by LPS and IFNγ in primary-cultured cortical cells that were derived from newborn mice, to investigate the mechanisms involved in neuroprotection and neurotoxicity in maternal/perinatal infections that cause various brain injuries including periventricular leukomalacia. A number of genes involved in the immune and inflammatory response were identified, showing that neonatal neuronal/glial cells are highly responsive to LPS and IFNγ. Subsequent RNA blot analysis revealed that the identified genes were activated by LPS and IFNγ in a cooperative or distinctive manner, thereby supporting the notion that these bacterial and cellular inflammatory mediators can affect the brain through direct but complicated pathways. We also identified several novel clones of apparently non-coding RNAs that potentially harbor various regulatory functions. Characterization of the presently identified genes will give insights into mechanisms and interventions not only for perinatal infection-induced brain damage, but also for many other innate immunity-related brain disorders.
Resumo:
BACKGROUND: In mammals it is well known that infections can lead to alterations in reproductive function. As part of the innate immune response, a number of cytokines and other immune factors is produced during bacterial infection or after treatment with lipopolysaccharide (LPS) and acts on the reproductive system. In fish, LPS can also induce an innate immune response but little is known about the activation of the immune system by LPS on reproduction in fish. Therefore, we conducted studies to examine the in vivo and in vitro effects of lipopolysaccharide (LPS) on the reproductive function of sexually mature female trout. METHODS: In saline- and LPS -injected brook trout, we measured the concentration of plasma steroids as well as the in vitro steroidogenic response (testosterone and 17alpha-hydroxyprogesterone) of ovarian follicles to luteinizing hormone (LH), the ability of 17alpha,20beta-dihydroxy-4-pregnen-3-one to induce germinal vesicle breakdown (GVBD) in vitro, and that of epinephrine to stimulate follicular contraction in vitro. We also examined the direct effects of LPS in vitro on steroid production, GVBD and contraction in brook trout ovarian follicles. The incidence of apoptosis was evaluated by TUNEL analysis. Furthermore, we examined the gene expression pattern in the ovary of saline- and LPS-injected rainbow trout by microarray analysis. RESULTS: LPS treatment in vivo did not affect plasma testosterone concentration or the basal in vitro production of steroids, although a small but significant potentiation of the effects of LH on testosterone production in vitro was observed in ovarian follicles from LPS-treated fish. In addition, LPS increased the plasma concentration of cortisol. LPS treatment in vitro did not affect the basal or LH-stimulated steroid production in brook trout ovarian follicles. In addition, we did not observe any effects of LPS in vivo or in vitro on GVBD or follicular contraction. Therefore, LPS did not appear to impair ovarian steroid production, oocyte final maturation or follicular contraction under the present experimental conditions. Interestingly, LPS administration in vivo induced apoptosis in follicular cells, an observation that correlated with changes in the expression of genes involved in apoptosis, as evidenced by microarray analysis. CONCLUSION: These results indicate that female trout are particularly resistant to an acute administration of LPS in terms of ovarian hormone responsiveness. However, LPS caused a marked increase in apoptosis in follicular cells, suggesting that the trout ovary could be sensitive to the pro-apoptotic effects of LPS-induced inflammatory cytokines.
Resumo:
To determine the most adequate number and size of tissue microarray (TMA) cores for pleomorphic adenoma immunohistochemical studies. Eighty-two pleomorphic adenoma cases were distributed in 3 TMA blocks assembled in triplicate containing 1.0-, 2.0-, and 3.0-mm cores. Immunohistochemical analysis against cytokeratin 7, Ki67, p63, and CD34 were performed and subsequently evaluated with PixelCount, nuclear, and microvessel software applications. The 1.0-mm TMA presented lower results than 2.0- and 3.0-mm TMAs versus conventional whole section slides. Possibly because of an increased amount of stromal tissue, 3.0-mm cores presented a higher microvessel density. Comparing the results obtained with one, two, and three 2.0-mm cores, there was no difference between triplicate or duplicate TMAs and a single-core TMA. Considering the possible loss of cylinders during immunohistochemical reactions, 2.0-mm TMAs in duplicate are a more reliable approach for pleomorphic adenoma immunohistochemical study.
Resumo:
DNA Microarray was developed to monitor the expression of many genes from Xylella fastidiosa, allowing the side by-side comparison of two situations in a single experiment. The experiments were performed using X. fastidiosa cells grown in two culture media: BCYE and XDM2. The primers were synthesized, spotted onto glass slides and the array was hybridized against fluorescently labeled cDNAs. The emitted signals were quantified, normalized and the data were statistically analyzed to verify the differentially expressed genes. According to the data, 104 genes were differentially expressed in XDM2 and 30 genes in BCYE media. The present study showed that DNA microarray technique efficiently differentiate the expressed genes under different conditions.
Resumo:
A desnutrição proteico-energética modifica a resistência à infecção, modificando diversos processos fisiológicos, incluindo a hematopoiese e as funções imunológicas. Neste estudo, avaliamos as concentrações séricas do fator C3 e do Sistema Complemento total (CH50) em um modelo no qual camundongos submetidos à desnutrição proteico-energética são estimulados com lipopolissacarídeo (LPS), e avaliamos a celularidade periférica, medular e esplênica. Camundongos Swiss, machos, adultos, com dois meses de idade foram submetidos ao processo de desnutrição proteica com uma dieta contendo 4% de proteína em comparação aos animais controles com uma dieta contendo 20% de proteína. Quando os animais do grupo desnutrido alcançaram aproximadamente 20% de perda de peso, em relação ao inicial, foram inoculados endovenosamente com LPS. As células do sangue, da medula óssea e do baço foram quantificadas, bem como as concentrações circulantes de C3 e CH50 em animais estimulados com LPS. Os animais desnutridos apresentaram anemia e leucopenia, além de redução significativa da celularidade da medula óssea e do baço. Os animais desnutridos apresentaram menor taxa de sobrevivência, bem como das concentrações do fator C3 do complemento e do complemento total em relação aos animais controles. Estes resultados sugerem que animais desnutridos apresentam uma resposta deficiente aos LPS. A síntese menor do complemento pode ser em parte responsável pela imunodeficiência observada. Estes resultados conduzem-nos a inferir que a desnutrição proteico-energética interfere na ativação da resposta imune
Resumo:
The strategy used to treat HCV infection depends on the genotype involved. An accurate and reliable genotyping method is therefore of paramount importance. We describe here, for the first time, the use of a liquid microarray for HCV genotyping. This liquid microarray is based on the 5'UTR - the most highly conserved region of HCV - and the variable region NS5B sequence. The simultaneous genotyping of two regions can be used to confirm findings and should detect inter-genotypic recombination. Plasma samples from 78 patients infected with viruses with genotypes and subtypes determined in the Versant (TM) HCV Genotype Assay LiPA (version I; Siemens Medical Solutions, Diagnostics Division, Fernwald, Germany) were tested with our new liquid microarray method. This method successfully determined the genotypes of 74 of the 78 samples previously genotyped in the Versant (TM) HCV Genotype Assay LiPA (74/78, 95%). The concordance between the two methods was 100% for genotype determination (74/74). At the subtype level, all 3a and 2b samples gave identical results with both methods (17/17 and 7/7, respectively). Two 2c samples were correctly identified by microarray, but could only be determined to the genotype level with the Versant (TM) HCV assay. Genotype ""1'' subtypes (1a and 1b) were correctly identified by the Versant (TM) HCV assay and the microarray in 68% and 40% of cases, respectively. No genotype discordance was found for any sample. HCV was successfully genotyped with both methods, and this is of prime importance for treatment planning. Liquid microarray assays may therefore be added to the list of methods suitable for HCV genotyping. It provides comparable results and may readily be adapted for the detection of other viruses frequently co-infecting HCV patients. Liquid array technology is thus a reliable and promising platform for HCV genotyping.
Resumo:
Dermcidin (DCD) is a human gene mapped to chromosome 12q13 region, which is co-amplified with multiple oncogenes with a well-established role in the growth, survival and progression of breast cancers. Here, we present a summary of a DNA microarray-based study that identified the genes that are up- and down-regulated in a human MDA-361 pLKO control clone and three clones expressing short hairpin RNA against three different regions of DCD mRNA. A list of 235 genes was differentially expressed among independent clones (> 3-fold change and P < 0.005). The gene expression of 208 was reduced and of 27 was increased in the three DCD-RNAi clones compared to pLKO control clone. The expression of 77 genes (37%) encoding for enzymes involved in amino acid metabolism, glucose metabolism and oxidoreductase activity and several genes required for cell survival and DNA repair were decreased. The expression of EGFR/ErbB-1 gene, an important predictor of outcome in breast cancer, was reduced together with the genes for betacellulin and amphiregulin, two known ligands of EGFR/ErbB receptors. Many of the 27 genes up-regulated by DCD-RNAi expression have not yet been fully characterized; among those with known function, we identified the calcium-calmodulin-dependent protein kinase-II delta and calcineurin A alpha. We compared 132 up-regulated and 12 down-regulated genes in our dataset with those genes up- and down-regulated by inhibitors targeting various signaling pathway components. The analysis showed that the genes in the DCD pathway are aligned with those functionally influenced by the drugs sirolimus, LY-294002 and wortmannin. Therefore, DCD may exert its function by activating the PI3K/AKT/mTOR signaling pathway. Together, these bioinformatic approaches suggest the involvement of DCD in the regulation of genes for breast cancer cell metabolism, proliferation and survival.
Resumo:
Background: Cancer shows a great diversity in its clinical behavior which cannot be easily predicted using the currently available clinical or pathological markers. The identification of pathways associated with lymph node metastasis (N+) and recurrent head and neck squamous cell carcinoma (HNSCC) may increase our understanding of the complex biology of this disease. Methods: Tumor samples were obtained from untreated HNSCC patients undergoing surgery. Patients were classified according to pathologic lymph node status (positive or negative) or tumor recurrence (recurrent or non-recurrent tumor) after treatment (surgery with neck dissection followed by radiotherapy). Using microarray gene expression, we screened tumor samples according to modules comprised by genes in the same pathway or functional category. Results: The most frequent alterations were the repression of modules in negative lymph node (N0) and in non-recurrent tumors rather than induction of modules in N+ or in recurrent tumors. N0 tumors showed repression of modules that contain cell survival genes and in non-recurrent tumors cell-cell signaling and extracellular region modules were repressed. Conclusions: The repression of modules that contain cell survival genes in N0 tumors reinforces the important role that apoptosis plays in the regulation of metastasis. In addition, because tumor samples used here were not microdissected, tumor gene expression data are represented together with the stroma, which may reveal signaling between the microenvironment and tumor cells. For instance, in non-recurrent tumors, extracellular region module was repressed, indicating that the stroma and tumor cells may have fewer interactions, which disable metastasis development. Finally, the genes highlighted in our analysis can be implicated in more than one pathway or characteristic, suggesting that therapeutic approaches to prevent tumor progression should target more than one gene or pathway, specially apoptosis and interactions between tumor cells and the stroma.
Resumo:
Malnutrition modifies resistance to infection by impairing a number of physiological processes including hematopoesis and the immune response. In this study, we examined the production of Interleukin-4 (IL-4) and IL-10 in response to lipopolysaccharide (LPS) and also evaluated the cellularity of the blood, bone marrow, and spleen in a mouse model of protein-energy malnutrition. Two-month-old male Swiss mice were subjected to protein-energy malnutrition (PEM) with a low-protein diet (4%) as compared to the control diet (20%). When the experimental group lost approximately 20% of their original body weight, the animals from both groups received 1.25 mu g of LPS intravenously. The Cells ill the blood, bone marrow, and spleen were counted, and circulating levels of IL-4 and IL-10 were evaluated in animals stimulated with LPS. Cells from the spleen, bone marrow, and peritoneal cavity of non-inoculated animals were collected for Culture to evaluate the production of IL-4 and IL-10 after stimulating these cells with 1.25 mu g of LPS in vitro. Malnourished animals presented leucopenia and a severe reduction in bone marrow, spleen, and peritoneal cavity cellularity before and after Stimulus with LPS. The circulating levels of IL-10 were increased in malnourished animals inoculated with LPS when compared to control animals, although the levels of IL-4 did not differ. In cells cultured with LPS, we observed high levels of IL-10 in the bone marrow cells of malnourished animals. These findings suggest that malnourished mice present a deficient immune response to LPS. These alterations may be partly responsible for the immunodeficiency observed in these malnourished mice.
Resumo:
The lack of a clear correlation between the levels of antibody to pertussis antigens and protection against disease lends credence to the possibility that cell-mediated immunity provides primary protection against disease. This phase I comparative trial had the aim of comparing the in vitro cellular immune response and anti-pertussis toxin (anti-PT) immunoglobulin G (IgG) titers induced by a cellular pertussis vaccine with low lipopolysaccharide (LPS) content (wP(low) vaccine) with those induced by the conventional whole-cell pertussis (wP) vaccine. A total of 234 infants were vaccinated at 2, 4, and 6 months with the conventional wP vaccine or the wP(low) vaccine. Proliferation of CD3(+) T cells was evaluated by flow cytometry after 6 days of peripheral blood mononuclear cell culture with stimulation with heat-killed Bordetella pertussis or phytohemagglutinin (PHA). CD3(+), CD4(+), CD8(+), and T-cell receptor gamma delta-positive (gamma delta(+)) cells were identified in the gate of blast lymphocytes. Gamma interferon, tumor necrosis factor alpha, interleukin-4 (IL-4), and IL-10 levels in super-natants and serum anti-PT IgG levels were determined using enzyme-linked immunosorbent assay (ELISA). The net percentage of CD3(+) blasts in cultures with B. pertussis in the group vaccinated with wP was higher than that in the group vaccinated with the wP(low) vaccine (medians of 6.2% for the wP vaccine and 3.9% for the wP(low) vaccine; P = 0.029). The frequencies of proliferating CD4(+), CD8(+), and gamma delta(+) cells, cytokine concentrations in supernatants, and the geometric mean titers of anti-PT IgG were similar for the two vaccination groups. There was a significant difference between the T-cell subpopulations for B. pertussis and PHA cultures, with a higher percentage of gamma delta(+) cells in the B. pertussis cultures (P < 0.001). The overall data did suggest that wP vaccination resulted in modestly better specific CD3(+) cell proliferation, and gamma delta(+) cell expansions were similar with the two vaccines.
Resumo:
In the context of cancer diagnosis and treatment, we consider the problem of constructing an accurate prediction rule on the basis of a relatively small number of tumor tissue samples of known type containing the expression data on very many (possibly thousands) genes. Recently, results have been presented in the literature suggesting that it is possible to construct a prediction rule from only a few genes such that it has a negligible prediction error rate. However, in these results the test error or the leave-one-out cross-validated error is calculated without allowance for the selection bias. There is no allowance because the rule is either tested on tissue samples that were used in the first instance to select the genes being used in the rule or because the cross-validation of the rule is not external to the selection process; that is, gene selection is not performed in training the rule at each stage of the cross-validation process. We describe how in practice the selection bias can be assessed and corrected for by either performing a cross-validation or applying the bootstrap external to the selection process. We recommend using 10-fold rather than leave-one-out cross-validation, and concerning the bootstrap, we suggest using the so-called. 632+ bootstrap error estimate designed to handle overfitted prediction rules. Using two published data sets, we demonstrate that when correction is made for the selection bias, the cross-validated error is no longer zero for a subset of only a few genes.
Resumo:
Elevated concentrations of plasma proinflammatory cytokines have been detected in patients with alcoholic hepatitis (AH) and in a model of lipopolysaccharide-induced hepatitis in ethanol-fed Wistar rats. These cytokines have been implicated in the pathogenesis of the liver damage. Considering the likely involvement of the immune system in AH, and the frequent use of Lewis rats in autoimmune disease models, Lewis rats were examined in the model to determine whether they would more closely mimic the immune status of a chronic alcoholic and be a preferable strain for use in future experiments. Lipopolysaccharide-induced hepatic tumor necrosis factor-cu, interleukin-1 alpha, interleukin-1 beta, and interleukin-6 mRNA expression was examined in both rat strains. The overall pattern of histological (panlobular piecemeal necrosis) and biochemical liver damage (plasma ALT levels), and cytokine expression was similar in both strains. Thus, it would appear that, despite the known susceptibility of Lewis rats to autoimmune phenomena, they do not respond to the experimental regime significantly better than Wistar rats. This study confirms that unknown mediators are contributing to the liver damage seen in this model and possibly in AH.
Resumo:
Neutrophil infiltration is a feature of alcoholic hepatitis (AH), and although the mechanism by which this occurs is unclear, it may involve a chemotactic gradient. We used lipopolysaccharide (LPS) to induce, in ethanol-fed rats, liver damage similar to that seen in AH. To our knowledge, this study is the first to examine the effect of ethanol on LPS-stimulated chemokine mRNA expression in this model. Hepatic cytokine-induced neutrophil chemoattractant (CINC)-1, CINC-2, monocyte chemoattractant protein-1 (MCP-1), macrophage inflammatory protein (MIP)-1 beta, MIP-2, and eotaxin mRNA levels were elevated 1 to 3 hr post-LPS in both groups. Maximal expression of MIP-2 and MCP-1 mRNA was higher in ethanol-fed rats 1 hr post-LPS, whereas CINC-2 mRNA expression was elevated above controls at 12 to 24 hr. Hepatic intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 mRNA levels were elevated in both groups at 1 hr, whereas L-selectin expression in ethanol-fed rats was elevated above controls at 12 to 24 hr. Hepatic neutrophil infiltration was highest during maximal hepatocyte necrosis. These data suggest that cell adhesion molecules, in conjunction with elevated cytokines and the subsequently induced chemokines, may assist in the formation of a chemotactic gradient within the liver, causing the neutrophil infiltration seen both in this model and possibly in AH.