982 resultados para Micro-element
Resumo:
Fruit quality is the result of the action of several factors, in particular the individual and combined effect of mineral nutrients. The proper evaluation of mineral nutritional requirements causes that fruit plants can express all their genetic potential. Thus, a research has been conducted in tropical fruit, for evaluating the influence of mineral nutrients on fruit quality; however, they appear dispersed. The objective of this review was to compile and report the effects of mineral nutrients on fruit quality of guava, mango, banana and papaya. Consequently, information about the influence of the essential elements in color, flavor, shape, size, appearance, penetration resistance, physiological disturbs disease incidence, physicochemical characteristics and lifetime of post - harvest fruit are presented.
Resumo:
Three finfish species frequently caught in the waters of the Gulf of Manfredonia (Apulia, Italy) were studied in order to know how the flesh composition (proximate, fatty acid, macro- and micro- element contents) could be affected by the season effect. The species we examined were European hake (Merluccius merluccius), chub mackerel (Scomber japonicus) and horse mackerel (Trachurus trachurus), which were analysed at the raw state in three catch season and after cooking in two catch season. More precisely, European hake and chub mackerel caught during winter, summer and fall were analysed at the raw state. The composition of the flesh of grilled European hake and chub mackerel was study on fish caught in winter and fall. Horse mackerel of summer and winter catches were analysed both at the raw and grilled state. Furthermore, an overall sensory profile was outlined for each species in two catch season and the relevant spider web diagrams compared. On the whole, two hundred and eighty fish were analysed during this research project in order to obtain a nutritional profile of the three species. One hundred and fifty was the overall number of specimens used to create complete sensory profiles and compare them among the species. The three finfish species proved to be quite interesting for their proximate, fatty acids, macro- and micro-element contents. Nutritional and sensory changes occurred as seasons elapsed for chub and horse mackerel only. A high variability of flesh composition seemed to characterise these two species. European hake confirmed its mild sensory profile and good nutritional characteristics, which were not affected by any season effect.
Resumo:
Osteoporotic spinal fractures are a major concern in ageing Western societies. This study develops a multi-scale finite element (FE) model of the osteoporotic lumbar vertebral body to study the mechanics of vertebral compression fracture at both the apparent (whole vertebral body) and micro-structural (internal trabecular bone core)levels. Model predictions were verified against experimental data, and found to provide a reasonably good representation of the mechanics of the osteoporotic vertebral body. This novel modelling methodology will allow detailed investigation of how trabecular bone loss in osteoporosis affects vertebral stiffness and strength in the lumbar spine.
Resumo:
The finite element (FE) analysis is an effective method to study the strength and predict the fracture risk of endodontically-treated teeth. This paper presents a rapid method developed to generate a comprehensive tooth FE model using data retrieved from micro-computed tomography (μCT). With this method, the inhomogeneity of material properties of teeth was included into the model without dividing the tooth model into different regions. The material properties of the tooth were assumed to be related to the mineral density. The fracture risk at different tooth portions was assessed for root canal treatments. The micro-CT images of a tooth were processed by a Matlab software programme and the CT numbers were retrieved. The tooth contours were obtained with thresholding segmentation using Amira. The inner and outer surfaces of the tooth were imported into Solidworks and a three-dimensional (3D) tooth model was constructed. An assembly of the tooth model with the periodontal ligament (PDL) layer and surrounding bone was imported into ABAQUS. The material properties of the tooth were calculated from the retrieved CT numbers via ABAQUS user's subroutines. Three root canal geometries (original and two enlargements) were investigated. The proposed method in this study can generate detailed 3D finite element models of a tooth with different root canal enlargements and filling materials, and would be very useful for the assessment of the fracture risk at different tooth portions after root canal treatments.
Resumo:
Articular cartilage is the load-bearing tissue that consists of proteoglycan macromolecules entrapped between collagen fibrils in a three-dimensional architecture. To date, the drudgery of searching for mathematical models to represent the biomechanics of such a system continues without providing a fitting description of its functional response to load at micro-scale level. We believe that the major complication arose when cartilage was first envisaged as a multiphasic model with distinguishable components and that quantifying those and searching for the laws that govern their interaction is inadequate. To the thesis of this paper, cartilage as a bulk is as much continuum as is the response of its components to the external stimuli. For this reason, we framed the fundamental question as to what would be the mechano-structural functionality of such a system in the total absence of one of its key constituents-proteoglycans. To answer this, hydrated normal and proteoglycan depleted samples were tested under confined compression while finite element models were reproduced, for the first time, based on the structural microarchitecture of the cross-sectional profile of the matrices. These micro-porous in silico models served as virtual transducers to produce an internal noninvasive probing mechanism beyond experimental capabilities to render the matrices micromechanics and several others properties like permeability, orientation etc. The results demonstrated that load transfer was closely related to the microarchitecture of the hyperelastic models that represent solid skeleton stress and fluid response based on the state of the collagen network with and without the swollen proteoglycans. In other words, the stress gradient during deformation was a function of the structural pattern of the network and acted in concert with the position-dependent compositional state of the matrix. This reveals that the interaction between indistinguishable components in real cartilage is superimposed by its microarchitectural state which directly influences macromechanical behavior.
Resumo:
The present work uses the discrete element method (DEM) to describe assemblies of particulate bulk materials. Working numerical descriptions of entire processes using this scheme are infeasible because of the very large number of elements (1012 or more in a moderately sized industrial silo). However it is possible to capture much of the essential bulk mechanics through selective DEM on important regions of an assembly, thereafter using the information in continuum numerical descriptions of particulate processes. The continuum numerical model uses population balances of the various components in bulk solid mixtures. It depends on constitutive relationships for the internal transfer, creation and/or destruction of components within the mixture. In this paper we show the means of generating such relationships for two important flow phenomena – segregation whereby particles differing in some important property (often size) separate into discrete phases, and degradation, whereby particles break into sub-elements, through impact on each other or shearing. We perform DEM simulations under a range of representative conditions, extracting the important parameters for the relevant transfer, creation and/or destruction of particles in certain classes within the assembly over time. Continuum predictions of segregation and degradation using this scheme are currently being successfully validated against bulk experimental data and are beginning to be used in schemes to improve the design and operation of bulk solids process plant.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Veneer fracture is the most common complication in zirconia-based restorations. The aim of this study was to evaluate the mechanical behavior of a zirconia-based crown in a lower canine tooth supporting removable partial denture (RPD) prosthesis, varying the bond quality of the veneer/coping interface. Microtomography (μCT) data of an extracted left lower canine were used to build the finite element model (M) varying the core material (gold core - MAu; zirconia core - MZi) and the quality of the veneer/core interface (complete bonded - MZi; incomplete bonded - MZi-NL). The incomplete bonding condition was only applied for zirconia coping by using contact elements (Target/Contact) with 0.3 frictional coefficients. Stress fields were obtained using Ansys Workbench 10.0. The loading condition (L = 1 N) was vertically applied at the base of the RPD prosthesis metallic support towards the dental apex. Maximum principal (σmax) and von Mises equivalent (σvM) stresses were obtained. The σmax (MPa) for the bonded condition was similar between gold and zirconia cores (MAu, 0.42; MZi, 0.40). The incomplete bonded condition (MZi-NL) raised σmax in the veneer up to 800% (3.23 MPa) in contrast to the bonded condition. The peak of σvM increased up to 270% in the MZi-NL. The incomplete bond condition increasing the stress in the veneer/zirconia interface.
Resumo:
The interest in automatic volume meshing for finite element analysis (FEA) has grown more since the appearance of microfocus CT (μCT), due to its high resolution, which allows for the assessment of mechanical behaviour at a high precision. Nevertheless, the basic meshing approach of generating one hexahedron per voxel produces jagged edges. To prevent this effect, smoothing algorithms have been introduced to enhance the topology of the mesh. However, whether smoothing also improves the accuracy of voxel-based meshes in clinical applications is still under question. There is a trade-off between smoothing and quality of elements in the mesh. Distorted elements may be produced by excessive smoothing and reduce accuracy of the mesh. In the present work, influence of smoothing on the accuracy of voxel-based meshes in micro-FE was assessed. An accurate 3D model of a trabecular structure with known apparent mechanical properties was used as a reference model. Virtual CT scans of this reference model (with resolutions of 16, 32 and 64 μm) were then created and used to build voxel-based meshes of the microarchitecture. Effects of smoothing on the apparent mechanical properties of the voxel-based meshes as compared to the reference model were evaluated. Apparent Young’s moduli of the smooth voxel-based mesh were significantly closer to those of the reference model for the 16 and 32 μm resolutions. Improvements were not significant for the 64 μm, due to loss of trabecular connectivity in the model. This study shows that smoothing offers a real benefit to voxel-based meshes used in micro-FE. It might also broaden voxel-based meshing to other biomechanical domains where it was not used previously due to lack of accuracy. As an example, this work will be used in the framework of the European project ContraCancrum, which aims at providing a patient-specific simulation of tumour development in brain and lungs for oncologists. For this type of clinical application, such a fast, automatic, and accurate generation of the mesh is of great benefit.
Resumo:
Laminated lake sediments from the Dead Sea basin provide high-resolution records of climatic variability in the eastern Mediterranean region, which is especially sensitive to changing climatic conditions. In this study, we aim on detailed reconstruction of climatic fluctuations and related changes in the frequency of flood and dust deposition events at ca. 3300 and especially at 2800 cal. yr BP from high-resolution sediment records of the Dead Sea basin. A ca. 4-m-thick, mostly varved sediment section from the western margin of the Dead Sea (DSEn - Ein Gedi profile) was analysed and correlated to the new International Continental Scientific Drilling Program (ICDP) Dead Sea Deep Drilling Project core 5017-1 from the deep basin. To detect even single event layers, we applied a multi-proxy approach of high-resolution microscopic thin section analyses, micro-X-ray fluorescence (µ-XRF) element scanning and magnetic susceptibility measurements, supported by grain size data and palynological analyses. Based on radiocarbon and varve dating, two pronounced dry periods were detected at ~3500-3300 and ~3000-2400 cal. yr BP which are differently expressed in the sediment records. In the shallow-water core (DSEn), the older dry period is characterised by a thick sand deposit, whereas the sedimentological change at 2800 cal. yr BP is less pronounced and characterised mainly by an enhanced frequency of coarse detrital layers interpreted as erosion events. In the 5017-1 deep-basin core, both dry periods are depicted by halite deposits. The onset of the younger dry period coincides with the Homeric Grand Solar Minimum at ca. 2800 cal. yr BP. Our results suggest that during this period, the Dead Sea region experienced an overall dry climate, superimposed by an increased occurrence of flash floods caused by a change in synoptic weather patterns.
Resumo:
Osteoporosis is a disease characterized by low bone mass and micro-architectural deterioration of bone tissue, with a consequent increase in bone fragility and susceptibility to fracture. Osteoporosis affects over 200 million people worldwide, with an estimated 1.5 million fractures annually in the United States alone, and with attendant costs exceeding $10 billion dollars per annum. Osteoporosis reduces bone density through a series of structural changes to the honeycomb-like trabecular bone structure (micro-structure). The reduced bone density, coupled with the microstructural changes, results in significant loss of bone strength and increased fracture risk. Vertebral compression fractures are the most common type of osteoporotic fracture and are associated with pain, increased thoracic curvature, reduced mobility, and difficulty with self care. Surgical interventions, such as kyphoplasty or vertebroplasty, are used to treat osteoporotic vertebral fractures by restoring vertebral stability and alleviating pain. These minimally invasive procedures involve injecting bone cement into the fractured vertebrae. The techniques are still relatively new and while initial results are promising, with the procedures relieving pain in 70-95% of cases, medium-term investigations are now indicating an increased risk of adjacent level fracture following the procedure. With the aging population, understanding and treatment of osteoporosis is an increasingly important public health issue in developed Western countries. The aim of this study was to investigate the biomechanics of spinal osteoporosis and osteoporotic vertebral compression fractures by developing multi-scale computational, Finite Element (FE) models of both healthy and osteoporotic vertebral bodies. The multi-scale approach included the overall vertebral body anatomy, as well as a detailed representation of the internal trabecular microstructure. This novel, multi-scale approach overcame limitations of previous investigations by allowing simultaneous investigation of the mechanics of the trabecular micro-structure as well as overall vertebral body mechanics. The models were used to simulate the progression of osteoporosis, the effect of different loading conditions on vertebral strength and stiffness, and the effects of vertebroplasty on vertebral and trabecular mechanics. The model development process began with the development of an individual trabecular strut model using 3D beam elements, which was used as the building block for lattice-type, structural trabecular bone models, which were in turn incorporated into the vertebral body models. At each stage of model development, model predictions were compared to analytical solutions and in-vitro data from existing literature. The incremental process provided confidence in the predictions of each model before incorporation into the overall vertebral body model. The trabecular bone model, vertebral body model and vertebroplasty models were validated against in-vitro data from a series of compression tests performed using human cadaveric vertebral bodies. Firstly, trabecular bone samples were acquired and morphological parameters for each sample were measured using high resolution micro-computed tomography (CT). Apparent mechanical properties for each sample were then determined using uni-axial compression tests. Bone tissue properties were inversely determined using voxel-based FE models based on the micro-CT data. Specimen specific trabecular bone models were developed and the predicted apparent stiffness and strength were compared to the experimentally measured apparent stiffness and strength of the corresponding specimen. Following the trabecular specimen tests, a series of 12 whole cadaveric vertebrae were then divided into treated and non-treated groups and vertebroplasty performed on the specimens of the treated group. The vertebrae in both groups underwent clinical-CT scanning and destructive uniaxial compression testing. Specimen specific FE vertebral body models were developed and the predicted mechanical response compared to the experimentally measured responses. The validation process demonstrated that the multi-scale FE models comprising a lattice network of beam elements were able to accurately capture the failure mechanics of trabecular bone; and a trabecular core represented with beam elements enclosed in a layer of shell elements to represent the cortical shell was able to adequately represent the failure mechanics of intact vertebral bodies with varying degrees of osteoporosis. Following model development and validation, the models were used to investigate the effects of progressive osteoporosis on vertebral body mechanics and trabecular bone mechanics. These simulations showed that overall failure of the osteoporotic vertebral body is initiated by failure of the trabecular core, and the failure mechanism of the trabeculae varies with the progression of osteoporosis; from tissue yield in healthy trabecular bone, to failure due to instability (buckling) in osteoporotic bone with its thinner trabecular struts. The mechanical response of the vertebral body under load is highly dependent on the ability of the endplates to deform to transmit the load to the underlying trabecular bone. The ability of the endplate to evenly transfer the load through the core diminishes with osteoporosis. Investigation into the effect of different loading conditions on the vertebral body found that, because the trabecular bone structural changes which occur in osteoporosis result in a structure that is highly aligned with the loading direction, the vertebral body is consequently less able to withstand non-uniform loading states such as occurs in forward flexion. Changes in vertebral body loading due to disc degeneration were simulated, but proved to have little effect on osteoporotic vertebra mechanics. Conversely, differences in vertebral body loading between simulated invivo (uniform endplate pressure) and in-vitro conditions (where the vertebral endplates are rigidly cemented) had a dramatic effect on the predicted vertebral mechanics. This investigation suggested that in-vitro loading using bone cement potting of both endplates has major limitations in its ability to represent vertebral body mechanics in-vivo. And lastly, FE investigation into the biomechanical effect of vertebroplasty was performed. The results of this investigation demonstrated that the effect of vertebroplasty on overall vertebra mechanics is strongly governed by the cement distribution achieved within the trabecular core. In agreement with a recent study, the models predicted that vertebroplasty cement distributions which do not form one continuous mass which contacts both endplates have little effect on vertebral body stiffness or strength. In summary, this work presents the development of a novel, multi-scale Finite Element model of the osteoporotic vertebral body, which provides a powerful new tool for investigating the mechanics of osteoporotic vertebral compression fractures at the trabecular bone micro-structural level, and at the vertebral body level.
Resumo:
A technique is described whereby micro-ATR/FTIR imaging can be used to follow polymer degradation reactions in situ in real time. The internal reflection element (IRE) assembly is removed from the ATR objective and polymer is solvent cast directly onto the IRE surface. The polymer is then subjected to degradation conditions and molecular structural changes monitored by periodically replacing the IRE assembly back in the ATR objective and collecting spectra which can be used to construct images. This approach has the benefit that the same part of the sample is always studied, and that contact by pressure which might damage the polymer surface is not required. The technique is demonstrated using the polymer Topas which was degraded by exposure to UVC light in air.